A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.
Ahmet Yldrm;Syed Tauseef Mohyud-Din**. Analytical Approach to Space- and Time-Fractional Burgers Equations[J]. 中国物理快报, 2010, 27(9): 90501-090501.
Ahmet Y, ld, r, m, Syed Tauseef Mohyud-Din**. Analytical Approach to Space- and Time-Fractional Burgers Equations. Chin. Phys. Lett., 2010, 27(9): 90501-090501.
[1] Momani S 2006 Chaos Sol. Frac. 28 930 [2] Biler P et al 1998 J. Diff. Equations 148 9 [3] Biler P et al 2001 Ann. Henri Poincaré 18 613 [4] Mann J A and Woyczynski W A 2001 Physica A 291 159 [5] Stanescu D et al 2005 J. Comput. Phys. 206 706 [6] Inc M 2008 J. Math. Anal. Appl. 345 476 [7] Sugimoto N 1991 J. Fluid Mech. 225 631 [8] Chen W 2005 Chin. Phys. Lett. 22 2601 [9] Sun H G et al 2010 Physica A 389 2719 [10] Chen W et al 2010 Int. J. Nonl. Sci. Num. Sim. 11 3 [11] Liao S J 1992 PhD Dissertation (Shanghai: Shanghai Jiao Tong University) [12] Liao S J 1995 Int. J. Non-Linear Mech. 30 371 [13] Liao S J 1997 Int. J. Non-Linear Mech. 32 815 [14] Liao S J 1999 Int. J. Non-Linear Mech. 34 759 [15] Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall, CRC Press) [16] Liao S J 2004 Appl. Math. Comput. 147 499 [17] Liao S J and Campo A 2002 J. Fluid Mech. 453 411 [18] Liao S J 2003 J. Fluid Mech. 488 189 [19] Ayub M, Rasheed A and Hayat T 2003 Int. J. Eng. Sci. 41 2091 [20] Hayat T, Khan M and Asghar S 2004 Acta Mech. 168 213 [21] Hayat T et al 2004 Appl. Math. Comput. 155 417 [22] Abbasbandy S 2007 Int. Comm. Heat Mass Transfer 34 380 [23] Abbasbandy S 2007 Phys. Lett. A 361 478 [24] Abbasbandy S 2008 Chem. Eng. J. 136 144 [25] Bataineh A S, Noorani M S M and Hashim I 2008 Comm. Non. Sci. Num. Sim. 13 2060 [26] Miller K S and Ross B 1993 An Introduction to the Fractional Calculus and Fractional Differential Equations (New York: Wiley) [27] Samko S G, Kilbas A A and Marichev O I 1993 Fractional Integrals and Derivatives: Theory and Applications (Yverdon: Gordon and Breach) [28] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press) [29] Luchko Y and Gorneflo R 1998 The Initial Value Problem for Some Fractional Differential Equations with the Caputo Derivative (Preprint series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin) [30] Caputo M 1967 J. Roy. Astron. Soc. 13 529