1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 3National Laboratory for Modern Communications, P.O.Box 810, Chengdu 610041
Cryptanalysis and Improvement of Two GHZ-State-Based QSDC Protocols
1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876 3National Laboratory for Modern Communications, P.O.Box 810, Chengdu 610041
In a recent paper[J. Korean. Phys. Soc. 49(2006)459], two GHZ-state-based quantum secure direct communication protocols were presented. Here we point out that an eavesdropper can utilize a special property of GHZ states, i.e. "correlation-elicitable" to obtain half information of the transmitted secrets without being detected in both protocols. The particular attack strategy is demonstrated in detail. Furthermore, a possible improvement is proposed, which makes the protocols secure against this kind of attack.
In a recent paper[J. Korean. Phys. Soc. 49(2006)459], two GHZ-state-based quantum secure direct communication protocols were presented. Here we point out that an eavesdropper can utilize a special property of GHZ states, i.e. "correlation-elicitable" to obtain half information of the transmitted secrets without being detected in both protocols. The particular attack strategy is demonstrated in detail. Furthermore, a possible improvement is proposed, which makes the protocols secure against this kind of attack.
[1] Rivest R L, Shamir A and Adleman L 1978 Communications of the ACM 21 120 [2] Bennett C H and Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Proceessing (Bangalore, India) (New York: IEEE) p 175 [3] Ekert A K 1991 Phys. Rev. Lett. 67 661 [4] Gao F, Guo F Z, Wen Q Y and Zhu F C 2006 Phys. Lett. A 349 53 [5] Deng F G and Long G L 2003 Phys. Rev. A 68 042315 [6] Zhang Y S, Li C F and Guo G C 2001 Phys. Rev. A 63 036301 [7] Song D 2004 Phys. Rev. A 69 034301 [8] Guo G P, Li C F, Shi B S, Li J and Guo G C 2001 Phys. Rev. A 64 042301 [9] Guo F Z, Liu T L, Wen Q Y and Zhu F C 2006 Int. J. Quant. Inf. 4 769 [10] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [11] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357 [12] Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 [13] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149 [14] Man Z X and Xia Y J 2006 Chin. Phys. Lett. 23 1680 [15] Zhang Z J, Liu J, Wang D and Shi S H 2007 Phys. Rev. A 75 026301 [16] Liu W J, Chen H W, Li Z Q and Liu Z H 2008 Chin. Phys. Lett. 25 2354 [17] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [18] Wang H F, Zhang S, Yeon K H and Um C I 2006 J. Korean Phys. Soc. 49 459 [19] Zhu A D, Xia Y, Fan Q B and Zhang S 2006 Phys. Rev. A 73 022338 [20] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 044305 [21] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359 [22] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [23] Lucamarini M and Mancini S 2005 Phys. Rev. Lett. 94 140501 [24] Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256 [25] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15 [26] Lee H, Lim J and Yang H J 2006 Phys. Rev. A 73 042305 [27] Wang J, Zhang Q and Tang C J 2006 Opt. Commun. 266 732 [28] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. Lett. 22 2473 [29] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301 [30] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829 [31] Gao F, Qin S J, Wen Q Y and Zhu F C 2007 Phys. Lett. A 365 386 [32] Gao F, Wen Q Y and Zhu F C 2007 Phys. Lett. A 360 748 [33] Gao F, Lin S, Wen Q Y and Zhu F C 2008 Chin. Phys. Lett. 25 1561 [34] Qin S J, Wen Q Y, Meng L M and Zhu F C 2009 Chin. Phys. Lett. 26 020312