Wigner Functions for the Bateman System on Noncommutative Phase Space
HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2
1School of Physics and Material Science, Anhui University, Hefei 230039 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Wigner Functions for the Bateman System on Noncommutative Phase Space
HENG Tai-Hua1, LIN Bing-Sheng2, JING Si-Cong2
1School of Physics and Material Science, Anhui University, Hefei 230039 2Department of Modern Physics, University of Science and Technology of China, Hefei 230026
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra.
HENG Tai-Hua;LIN Bing-Sheng;JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space[J]. 中国物理快报, 2010, 27(9): 90302-090302.
HENG Tai-Hua, LIN Bing-Sheng, JING Si-Cong. Wigner Functions for the Bateman System on Noncommutative Phase Space. Chin. Phys. Lett., 2010, 27(9): 90302-090302.
[1] Wigner E 1932 Phys. Rev. 40 749 [2] Fairlie D and Manogue C 1991 J. Phys. A: Math. Gen. 24 3807 Zachos C 2002 Int. J. Mod. Phys. A 17 297 [3] Bayen F, Flato M, Fronsdal C, Lichnerrowicz A and Sternheimei D 1978 Ann. Phys. (N.Y.) 111 61 Bayen F, Flato M, Fronsdal C, Lichnerrowicz A and Sternheimei D 1978 Ann. Phys. (N.Y.) 111 111 [4] Jing S C, Heng T H and Zuo F 2005 Phys. Lett. A 335 185 [5] Baker G 1958 Phys. Rev. 109 2198 [6] Pontriagin L, Boltańskij V, Gamkrelidze R and Miscenko E 1962 The Mathematical Theory of Optimal Processes (New York: Wiley) [7] Kossakowski A 2001 Open Sys. Information Dyn. 9 1 [8] Chrusciński D 2002 Open Sys. Information Dyn. 9 207 Chrusciński D 2006 Rep. Math. Phys. 57 319 [9] Bateman H 1931 Phys. Rev. 38 815 [10] Chrusciński D 2006 Ann. Phys. 321 854 [11] Chrusciński D Wigner Function for Damped Systems (math-ph/0209008)