By using the generalized version of the dressing method, we consider a Dirac system. The types of nonlinear evolution equations discussed involve the integrable variable-coefficient Dirac equation and the defocusing nonlinear Schrödinger equation. As an application, their explicit solutions and Lax pairs are given.
By using the generalized version of the dressing method, we consider a Dirac system. The types of nonlinear evolution equations discussed involve the integrable variable-coefficient Dirac equation and the defocusing nonlinear Schrödinger equation. As an application, their explicit solutions and Lax pairs are given.
SU Ting;WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System[J]. 中国物理快报, 2010, 27(9): 90203-090203.
SU Ting, WANG Zhi-Wei. An Application of a Generalized Version of the Dressing Method to Integration of a Variable-Coefficient Dirac System. Chin. Phys. Lett., 2010, 27(9): 90203-090203.
[1] Zakharov V E and Shabat A B 1974 Funt. Anal. Appl. 8 226 [2] Zakharov V E and Shabat A B 1979 Funt. Anal. Appl. 8 13 [3] Chowdhury R and Basak S 1984 J. Phys. A 17 683 [4] Dye J M and Parker A 2000 J. Math. Phys. 41 2889 [5] Parker A 2001 Inverse Problems 17 885 [6] Dai H H and Jeffrey A 1989 Phys. Lett. A 139 369 [7] Jeffrey A and Dai H H 1990 Rendiconti. di Mathematica, Serie VII 10 439 [8] Frolov I S 1972 Sov. Math. Dokl. 13 1468 [9] Asano N and Kato Y 1984 J. Math. Phys. 25 570 [10] Du D L 1998 PhD Dissertation (Zhengzhou: Zhengzhou University) [11] Hinton D B, Jordan A K, Klaus M and Shaw J K 1991 J. Math. Phys. 32 3015