Multiband Non-Thermal Radiation from the Crab Nebula and the Pulsar Wind Nebula in MSH 15-52
YU Huan1, JIANG Ze-Jun1,2
1Department of Physics, Yunnan University, Kunming 650091 2National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011
Multiband Non-Thermal Radiation from the Crab Nebula and the Pulsar Wind Nebula in MSH 15-52
YU Huan1, JIANG Ze-Jun1,2
1Department of Physics, Yunnan University, Kunming 650091 2National Astronomical Observatories/Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011
We study the multiband non-thermal emission from two pulsar wind nebulae (PWNe), the Crab nebula and the PWN in MSH 15-52. Both of them have been recently detected by the Fermi large area telescope (LAT) and powered by central gamma-ray pulsars. Motivated by the Fermi LAT results, we use a simplified time-dependent injection model to study the non-thermal emission from radio to very high energy gamma-ray radiation from these two sources. In this model, the relativistic electrons are accelerated in pulsar magnetosphere and at pulsar wind termination shocks and can be described by a broken power law. Those high energy particles evolve with time and produce non-thermal emission through synchrotron radiation and inverse Compton scattering of soft photons. For Crab nebula, using the GeV emission from 100 MeV to 10 GeV given by Fermi LAT, we can constrain the maximum energy of the electrons and other parameters. The non-thermal emission can be well explained by this model. We also use this model to explain the non-thermal emission from the PWN in MSH 15-52.
We study the multiband non-thermal emission from two pulsar wind nebulae (PWNe), the Crab nebula and the PWN in MSH 15-52. Both of them have been recently detected by the Fermi large area telescope (LAT) and powered by central gamma-ray pulsars. Motivated by the Fermi LAT results, we use a simplified time-dependent injection model to study the non-thermal emission from radio to very high energy gamma-ray radiation from these two sources. In this model, the relativistic electrons are accelerated in pulsar magnetosphere and at pulsar wind termination shocks and can be described by a broken power law. Those high energy particles evolve with time and produce non-thermal emission through synchrotron radiation and inverse Compton scattering of soft photons. For Crab nebula, using the GeV emission from 100 MeV to 10 GeV given by Fermi LAT, we can constrain the maximum energy of the electrons and other parameters. The non-thermal emission can be well explained by this model. We also use this model to explain the non-thermal emission from the PWN in MSH 15-52.
YU Huan;JIANG Ze-Jun;. Multiband Non-Thermal Radiation from the Crab Nebula and the Pulsar Wind Nebula in MSH 15-52[J]. 中国物理快报, 2010, 27(8): 89701-089701.
YU Huan, JIANG Ze-Jun,. Multiband Non-Thermal Radiation from the Crab Nebula and the Pulsar Wind Nebula in MSH 15-52. Chin. Phys. Lett., 2010, 27(8): 89701-089701.
[1] Zhang L et al 2007 Chin. Phys. Lett. 24 10 [2] Rees M J et al 1974 Mon. Not. R. Astron. Soc. 167 1 [3] Gaensler B M and Slane P O 2006 Annu. Rev. Astron. Astrophysics. 44 17 [4] Fang J and Zhang L 2010 Astron. Astrophys. 515 20 [5] Fang J and Zhang L 2010 Astrophys. J. (in press) (arXiv:1005.3386) [6] Green D A 2009 Bull. Astron. Soc. India 37 45 [7] Baars J W M et al 1972 Astron. Astrophys. 17 172 [8] Véron-Cetty M P et al 1993 Astron. Astrophys. 270 370 [9] Kuiper L et al 2001 Astron. Astrophys. 378 918 [10] Trussoni E et al 1996 Astron. Astrophys. 306 581 [11] Mineo T et al 2001 Astron. Astrophys. 380 695 [12] Gaensler B M et al 2002 Astrophys. J. 569 878 [13] Aharonian F et al 2005 Astron. Astrophys. 435 L17 [14] Nakamori T et al 2008 Astrophys. J. 677 297 [15] Zhang L et al 2008 Astrophys. J. 676 1210 [16] Abdo A A et al 2010 Astrophys. J. 708 1254 [17] Abdo A A 2010 Astrophys. J. 714 927 [18] Horns D and Aharonian F A 2004 Proceedings of the 5th INTEGRAL Workshop on the INTEGRAL Universe (ESA SP-552) (Munich, Germany 16-20 February 2004) [19] Trimble V 1973 Publ. Astron. Soc. Jpn. 85 579 [20] Weiler K W et al 1980 Astron. Astrophys. 90 269 [21] Weekes T C 1992 Space. Sci. Rev. 59 315 [22] Lyne A G et al 1993 Mon. Not. R. Astron. Soc. 265 1003 [23] Atoyan A M et al 1996 Mon. Not. R. Astron. Soc. 278 525 [24] Strom R G and Greidanus H 1992 Nature 358 654 [25] Bandiera R et al 2002 Astron. Astrophys. 386 1044 [26] Green D A et al 2004 Mon. Not. R. Astron. Soc. 355 1315 [27] Aharonian F et al 2004 Astrophys. J. 614 897 [28] Aharonian F et al 2006 Astron. Astrophys. 457 899 [29] Albert J, Aliu E et al 2008 Astrophys. J. 674 1037 [30] Milne D K et al 1993 Mon. Not. R. Astron. Soc. 264 853 [31] Seward F D and Harnden F R Jr 1982 Astrophys. J. 256 L45 [32] Livingstone M A et al 2005 Astrophys. J. 619 1046