ZHU Jing-Yi1, LIU Ben-Kang1,2, WANG Yan-Qiu1, HE Hai-Xiang1,2, WANG Li1
1State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Dynamics of H2 in Intense Femtosecond Laser Field
ZHU Jing-Yi1, LIU Ben-Kang1,2, WANG Yan-Qiu1, HE Hai-Xiang1,2, WANG Li1
1State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Dalian 116023 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
Fragmentation of H2 in femtosecond laser field is studied by using velocity map ion imaging method and 70 fs laser at 405 nm and 810 nm from 0.3 to 3.0×1014 W/cm2. Angular distributions from Coulomb explosion are independent of the laser wavelengths and intensities, which means the explosion starts from the same electronic state. Angular distributions from dissociation channels in the 810 nm laser field broaden with the laser intensity. Lobe structures in angular distributions from Coulomb explosion and above threshold dissociation channels are reported. Fine structures in the distribution of internuclear distances are observed.
Fragmentation of H2 in femtosecond laser field is studied by using velocity map ion imaging method and 70 fs laser at 405 nm and 810 nm from 0.3 to 3.0×1014 W/cm2. Angular distributions from Coulomb explosion are independent of the laser wavelengths and intensities, which means the explosion starts from the same electronic state. Angular distributions from dissociation channels in the 810 nm laser field broaden with the laser intensity. Lobe structures in angular distributions from Coulomb explosion and above threshold dissociation channels are reported. Fine structures in the distribution of internuclear distances are observed.
[1] Giusti-Suzor A et al 1990 Phys. Rev. Lett. 64 515 [2] Zavriyev A et al 1993 Phys. Rev. Lett. 70 1077 [3] Zavriyev A et al 1990 Phys. Rev. A 42 5500 [4] Bucksbaum P H et al 1990 Phys. Rev. Lett. 64 1883 [5] Yang B et al 1991 Phys. Rev. A 44 R1458 [6] Bandrauk A D and Sink M L 1981 J. Chem. Phys. 74 1110 [7] Frasinski L J et al 1999 Phys. Rev. Lett. 83 3625 [8] Posthumus J H et al 1995 J. Phys. B 28 L349 [9] Chelkowski S and Bandrauk A D 1995 J. Phys. B 28 L723 [10] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511 [11] Chelkowski S et al 1995 Phys. Rev. A 52 2977 [12] Chelkowski S et al 1996 Phys. Rev. A 54 3235 [13] Constant E et al 1996 Phys. Rev. Lett. 76 4140 [14] Walsh T D G et al 1998 Phys. Rev. A 58 3922 [15] Giusti-Suzor A et al 1995 J. Phys. B 28 309 [16] Thompson M R et al 1997 J. Phys. B 30 5755 [17] Posthumus J H 2004 Rep. Prog. Phys. 67 623 [18] Liu Z T et al 2010 J. Phys. B 43 055601 [19] Wang P Q et al 2006 Phys. Rev. A 74 043411 [20] Sandig K et al 2000 Phys. Rev. Lett. 85 4876 [21] Pavicic D et al 2003 Eur. Phys. J. D 26 39 [22] Pavicic D et al 2005 Phys. Rev. Lett. 94 163002 [23] Vanroose W et al 2005 Science 310 1787 [24] Moser B and Gibson G N 2009 Phys. Rev. A 80 041402(R) [25] Hua J J and Esry B D 2009 Phys. Rev. A 80 013413 [26] Liu Z H et al 2004 Chem. Phys. Lett. 383 198 [27] Eppink A T J B et al 1997 Rev. Sci. Instrum. 68 3477 [28] Walsh T D G et al 1997 J. Phys. B 30 2167 [29] Villarejo D 1968 J. Chem. Phys. 49 2523 [30] Uhlmann U et al 2005 Phys. Rev. A 72 045402 [31] Staudte A et al 2002 Phys. Rev. A 65 020703(R) [32] Esry B D et al 2006 Phys. Rev. Lett. 97 013003 [33] Aubanel E E et al 1993 Phys. Rev. A 48 2145 [34] Numico R et al 1999 Phys. Rev. A 60 406 [35] Frasinski L J et al 2001 Phys. Rev. Lett. 86 2541 [36] Lu R F et al 2008 Phys. Rev. E 77 066701 [37] Plummer M and McCann J F 1997 J. Phys. B 30 L401 [38] Adoui L et al 1999 J. Phys. B 32 631