摘要The super-classical-Boussinesq hierarchy with self-consistent sources is considered. Then, infinitely many conservation laws for the integrable super-classical-Boussinesq hierarchy are established.
Abstract:The super-classical-Boussinesq hierarchy with self-consistent sources is considered. Then, infinitely many conservation laws for the integrable super-classical-Boussinesq hierarchy are established.
[1] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys 9 1204 [2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419 [3] Kupershmidt B A 1987 Elements of Superintegrable Systems (Dordrecht: Reidel) [4] Kupershmidt B A 1984 Phys. Lett. A 102 213 [5] Volkov D V and Akulov V P 1973 Phys. Lett. B 46 109 [6] Wess J and Zumino B 1974 Nucl. Phys. B 70 39 [7] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511 [8] Tao S X and Xia T C 2010 Chin. Phys. B 19 070202 [9] Yu J, Han J W and He J S 2009 J. Phys. A: Math. Theor. 42 465201 [10] Li Z 2009 Mode. Phys. Lett. B 23 2907 [11] He J S, Yu J, Zhou R G and Cheng Y 2008 Mod. Phys. Lett. B 22 275 [12] Yu J, He J S, Cheng Y and Han J W 2010 J. Phys. A: Math. Theor. 43 445201 [13] Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. B 31 361 [14] Kupershmidt B A 1984 Phys. Lett. A 102 213 [15] Mathieu P 1988 J. Math. Phys. 29 2499 [16] Yu F J 2008 Chin. Phys. Lett. 25 3519[17] Li L 2011 Phys. Lett. A 375 1402 [18] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453