A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions
QIAO Zhi-Jun1,2 , Walter STRAMPP2
1 Institute of Mathematics, Fudan University, Shanghai 200433
2 Fachbereich 17, Mathematik, Universität-GH Kassel, D-34109 Kassel, Germany
A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions
QIAO Zhi-Jun1,2 ;Walter STRAMPP2
1 Institute of Mathematics, Fudan University, Shanghai 200433
2 Fachbereich 17, Mathematik, Universität-GH Kassel, D-34109 Kassel, Germany
关键词 :
03.40.Gc ,
03.40.Kf ,
47.10.+g
Abstract : A new method is presented to generate finite dimensional integrable systems. Our starting point is a generalized Lax matrix instead of usual Lax pair. Then a unisonant r-matrix structure and a set of generalized Hamiltonian functions are constructed. It can be clearly seen that various constrained integrable flows by nonlinearization method, such as the c-AKNS, c-MKdV, c-Toda, etc., are derived from the reduction of this structure. Furthermore, some new integrable flows are produced.
Key words :
03.40.Gc
03.40.Kf
47.10.+g
出版日期: 2000-04-01
引用本文:
QIAO Zhi-Jun;Walter STRAMPP. A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions[J]. 中国物理快报, 2000, 17(4): 235-237.
QIAO Zhi-Jun, Walter STRAMPP. A Unisonant r-Matrix Structure of Integrable Systems and Its Reductions. Chin. Phys. Lett., 2000, 17(4): 235-237.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2000/V17/I4/235
[1]
CHEN Sheng;LIU Zhao-Hui;HE Zhu;ZHANG Chao;TIAN Zhi-Wei;SHI Bao-Chang;ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry [J]. 中国物理快报, 2006, 23(3): 656-659.
[2]
LIN Ji;CHENG Xue-Ping;YE Li-Jun. Soliton and Periodic Travelling Wave Solutions for Quadratic Nonlinear Media [J]. 中国物理快报, 2006, 23(1): 147-150.
[3]
XU You-Sheng;ZHONG Yi-Jun;HUANG Guo-Xiang. Lattice Boltzmann Method for Diffusion-Reaction-Transport Processes in Heterogeneous Porous Media [J]. 中国物理快报, 2004, 21(7): 1298-1301.
[4]
HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System [J]. 中国物理快报, 2004, 21(3): 439-442.
[5]
LIU Xue-Shen;DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method [J]. 中国物理快报, 2004, 21(2): 230-232.
[6]
XU You-Sheng;;LIU Yang;HUANG Guo-Xiang. Using Digital Imaging to Characterize Threshold Dynamic Parameters in Porous Media Based on Lattice Boltzmann Method [J]. 中国物理快报, 2004, 21(12): 2454-2458.
[7]
LIU Xue-Shen;QI Yue-Ying;DING Pei-Zhu. Periodic and Chaotic Breathers in the Nonlinear Schrödinger Equation [J]. 中国物理快报, 2004, 21(11): 2081-2084.
[8]
QU Chang-Zheng;YAO Ruo-Xia;LI Zhi-Bin. Two-Component Wadati--Konno--Ichikawa Equation and Its Symmetry Reductions [J]. 中国物理快报, 2004, 21(11): 2077-2080.
[9]
ZHENG Chun-Long;;ZHANG Jie-Fang;HUANG Wen-Hua;CHEN Li-Qun. Peakon and Foldon Excitations In a (2+1)-Dimensional Breaking Soliton System [J]. 中国物理快报, 2003, 20(6): 783-786.
[10]
ZHANG Jie-Fang;ZHENG Chun-Long;MENG Jian-Ping;FANG Jian-Ping. Chaotic Dynamical Behaviour in Soliton Solutions for a New (2+1)-Dimensional Long Dispersive Wave System [J]. 中国物理快报, 2003, 20(4): 448-451.
[11]
ZHENG Chun-Long;;ZHANG Jie-Fang;SHENG Zheng-Mao. Chaos and Fractals in a (2+1)-Dimensional Soliton System [J]. 中国物理快报, 2003, 20(3): 331-334.
[12]
LIU Yin-Ping;LI Zhi-Bin. An Automated Algebraic Method for Finding a Series of Exact Travelling Wave Solutions of Nonlinear Evolution Equations [J]. 中国物理快报, 2003, 20(3): 317-320.
[13]
WANG Feng-Jiao;TANG Yi. Small Amplitude Solitons in the Higher Order Nonlinear Schrödinger Equation in an Optical Fibre [J]. 中国物理快报, 2003, 20(10): 1770-1772.
[14]
DUAN Wen-Shan;HONG Xue-Ren;SHI Yu-Ren;LU Ke-Pu;SUN Jian-An. Weakly Two-Dimensional Solitary Waves on Coupled Nonlinear
Transmission Lines [J]. 中国物理快报, 2002, 19(9): 1231-1233.
[15]
LIU Yin-Ping;LI Zhi-Bin. An Automated Jacobi Elliptic Function Method for Finding Periodic Wave Solutions to Nonlinear Evolution Equations [J]. 中国物理快报, 2002, 19(9): 1228-1230.