摘要We consider geodesic motion in a particular Kundt type-III spacetime in which the Einstein–Yang–Mills equations admit the solutions. On a particular surface as constraint, we project the geodesics into the (x,y) plane and treat the problem as a two-dimensional one. Our numerical study shows that chaotic behavior emerges under reasonable conditions.
Abstract:We consider geodesic motion in a particular Kundt type-III spacetime in which the Einstein–Yang–Mills equations admit the solutions. On a particular surface as constraint, we project the geodesics into the (x,y) plane and treat the problem as a two-dimensional one. Our numerical study shows that chaotic behavior emerges under reasonable conditions.
[1] Stephani H, Kramer D, MacCallum M A H, Hoenselaers C and Herlt E 2003 Exact Solutions of Einstein's Field Equations (Cambridge: Cambridge University)
[2] Guven R and Yörük E 1996 Phys. Rev. D 54 6413
[3] Coley A A 2002 Phys. Rev. Lett. 89 281601
[4] Coley A, Milson R, Pelavas N, Pravda V, Pravdova A and Zalaletdinov R 2003 Phys. Rev. D 67 104020
[5] Coley A, Hervik S and Pelavas N 2006 Class. Quantum Grav. 23 3053
[6] Coley A, Fuster A, Hervik S and Pelavas N 2007 J. High Energy Phys. 0705 032
[7] Chakhad M 2009 arXiv:hepth/0907.1973
[8] Podolsky J and Zofka M 2009 Class. Quantum Grav. 26 105008
[9] Guven R 1979 Phys. Rev. D 19 471
[10] Podolsky J and Ortaggio M 2003 Class. Quantum Grav. 20 1685
[11] Podolsky J and Belan M 2004 Class. Class. Quantum Grav. 21 2811
[12] Podolsky J and Kofron D 2007 Class. Quantum Grav. 24 3413
[13] Griffiths J B, Docherty P and Podolsky J 2004 Class. Quantum Grav. 21 207
[14] Fuster A and van Holten J W 2005 Phys. Rev. D 72 024011
[15] Podolsky J and Vesely K 1998 Phys. Rev. D 58 081501
[16] Sakalli I and Halilsoy M 2006 Phys. Rev. D 74 067501
[17] Misner C W, Thorne K S and Wheeler K A 1973 Gravitation (San Francisco: W H Freeman)
[18] Cheb-Terrab E S and de Oliveria H P 1996 Comput. Phys. Commun. 95 171