Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment
PARK Seoung-Hwan1, LEE Yong-Tak2
1Department of Electronics Engineering, Catholic Universityof Daegu, Hayang, Kyeongsan, Kyeongbuk 712-702, Republic of Korea2Department of Information and Communications, Gwangju Institute ofScience and Technology 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republicof,Korea
Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment
PARK Seoung-Hwan1, LEE Yong-Tak2
1Department of Electronics Engineering, Catholic Universityof Daegu, Hayang, Kyeongsan, Kyeongbuk 712-702, Republic of Korea2Department of Information and Communications, Gwangju Institute ofScience and Technology 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republicof,Korea
Optical properties of zinc-blende InGaN/GaN QW structures are investigated using the multiband effective-mass theory. The transition wavelength values at 300 K ranged from 440 to 570 nm in the investigated range of the In composition and the well width. The theoretical wavelengths show reasonable agreement with the experimental results. The optical gain decreases with the increasing well width. This is mainly due to the reduction in the quasi-Fermi-level separation because the optical matrix element increases with the well width.
Optical properties of zinc-blende InGaN/GaN QW structures are investigated using the multiband effective-mass theory. The transition wavelength values at 300 K ranged from 440 to 570 nm in the investigated range of the In composition and the well width. The theoretical wavelengths show reasonable agreement with the experimental results. The optical gain decreases with the increasing well width. This is mainly due to the reduction in the quasi-Fermi-level separation because the optical matrix element increases with the well width.
PARK Seoung-Hwan;LEE Yong-Tak. Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment[J]. 中国物理快报, 2010, 27(4): 44208-044208.
PARK Seoung-Hwan, LEE Yong-Tak
. Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment. Chin. Phys. Lett., 2010, 27(4): 44208-044208.
[1] Martin G et al 1996 Appl. Phys. Lett. 68 2541 [2] Bernardini F et al 1997 Phys. Rev. B 56 10024 [3] Park S H and Chuang S L 1999 Phys. Rev. B 59 4725 [4] Takeuchi T, Amano H and Akasaki I 2000 Jpn. J. Appl. Phys. 39 413 [5] Kwon S Y et al 2008 J. Appl. Phys. 103 063509 [6] Park J and Kawakami Y 2006 Appl. Phys. Lett. 88 202107 [7] Park S H, Park J and Yoon E 2007 Appl. Phys. Lett. 90 023508 [8] Wang B Z et al 2007 J. Phys. D: Appl. Phys. 40 765 [9] Park S H, Ahn D and Kim J W 2008 Appl. Phys. Lett. 92 171115 [10] Arif R A, Ee Y K and Tansu N 2007 Appl. Phys. Lett. 91 091110 [11] Arif R A, Zhao H, Ee Y K and Tansu N 2008 IEEE J. Quantum Electron. 44 573 [12] Park S H, Ahn D and Kim J W 2009 Appl. Phys. Lett. 94 041109 [13] Arif R A, Zhao H and Tansu N 2008 Appl. Phys. Lett. 92 011104 [14] Miyoshi S et al 1992 J. Cryst. Growth 124 439 [15] Wang L S et al 2005 Appl. Phys. Lett. 87 111908 [16] Li S et al 2007 Appl. Phys. Lett. 90 071903 [17] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491 [18] Park S H and Chuang S L 2000 J. Appl. Phys. 87 353 [19] Ahn D 1997 Prog. Quantum Electron. 21 249 [20] Park S H et al 2000 Semicond. Sci. Technol. 15 203 [21] Chow W W, Koch S W and Sergent Ⅲ M 1994 Semiconductor-Laser Physics (Berlin: Springer) p 119 [22] Vurgaftman I and Meyer J R 2003 J. Appl. Phys. 94 3675 [23] Lee B and Wang L W 2006 J. Appl. Phys. 100 093717