We present a new concise approach for normalizing m-photon-added squeezed state -photon-subtracted squeezed state , i.e., we construct the generating function andrespectively, after calculating them and comparing the result with the standard form of generating function of Legendre polynomials Pm,we find m<r|r>m=m!coshmrPm(cosh r), and , where r is the squeezing parameter.
We present a new concise approach for normalizing m-photon-added squeezed state -photon-subtracted squeezed state , i.e., we construct the generating function andrespectively, after calculating them and comparing the result with the standard form of generating function of Legendre polynomials Pm,we find m<r|r>m=m!coshmrPm(cosh r), and , where r is the squeezing parameter.
FAN Hong-Yi;JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States[J]. 中国物理快报, 2010, 27(4): 44206-044206.
FAN Hong-Yi, JIANG Nian-Quan. New Approach for Normalizing Photon-Added and Photon-Subtracted Squeezed States. Chin. Phys. Lett., 2010, 27(4): 44206-044206.
[1] Neergaard-Nielsen J S, Melholt Nielsen B, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604 [2] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83 [3] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568 [4] Buzek V 1990 J. Mod. Opt. 37 303 [5] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709 [6] Dodonov V V 2002 J. Opt. B: Quantum Semiclass. Opt. 4 R1 [7] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer) [8] Orszag M 2000 Quantum Optics (Berlin: Springer) [9] Fan H Y 1992 J. Phys. A 25 3443 [10] Fan H Y 2008 Ann. Phys. 323 500 [11] Weyl H 1927 Z. Phys. 46 1 [12] Wigner E 1932 Phys. Rev. 40 749 [13] Fan H Y and Zaidi H R 1987 Phys. Lett. A 124 303 [14] Gradshteyn I S and Ryzhik L M 1980 Tables of Integratrals Series and Products (New York: Academic press) [15] Zhang X X and Fan H Y 1992 Phys. Lett. A 165 14 [16] Fan H Y, Hu L Y and Xu X X 2009 Mod. Phys. Lett. A 24 1597