Semiclassical Evaluation of the Quantum Propagator of Chaotic Systems
ZHANG Fei-Zhou1 , WANG Jiao2 , GU Yan1,2
1 Department of Astronomy and Applied Physics, 2 Center of Nonlinear Science, University of Science and Technology of China, Hefei 230026
Semiclassical Evaluation of the Quantum Propagator of Chaotic Systems
ZHANG Fei-Zhou1 ;WANG Jiao2 ;GU Yan1,2
1 Department of Astronomy and Applied Physics, 2 Center of Nonlinear Science, University of Science and Technology of China, Hefei 230026
关键词 :
05.45.+b
Abstract : The propagators of quantum chaotic systems in configuration space are calculated semiclassically. For the strongly chaotic system whose phase space is torus, such as baker’s map, we find that, long after a logarithm time, the quantum propagator can be evaluated approximately as the local average of the semiclassical one on each quantum cell h.
Key words :
05.45.+b
出版日期: 2000-07-01
引用本文:
ZHANG Fei-Zhou;WANG Jiao;GU Yan;. Semiclassical Evaluation of the Quantum Propagator of Chaotic Systems[J]. 中国物理快报, 2000, 17(7): 472-474.
ZHANG Fei-Zhou, WANG Jiao, GU Yan,. Semiclassical Evaluation of the Quantum Propagator of Chaotic Systems. Chin. Phys. Lett., 2000, 17(7): 472-474.
链接本文:
https://cpl.iphy.ac.cn/CN/
或
https://cpl.iphy.ac.cn/CN/Y2000/V17/I7/472
[1]
FANG Jin-Qing;YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications [J]. 中国物理快报, 2004, 21(8): 1429-1432.
[2]
He Wei-Zhong;XU Liu-Su;ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators [J]. 中国物理快报, 2004, 21(8): 1433-1436.
[3]
YIN Hua-Wei;LU Wei-Ping;WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series [J]. 中国物理快报, 2004, 21(6): 1013-1015.
[4]
HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System [J]. 中国物理快报, 2004, 21(3): 439-442.
[5]
CHEN Jun;LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems [J]. 中国物理快报, 2003, 20(9): 1441-1443.
[6]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems [J]. 中国物理快报, 2003, 20(2): 199-201.
[7]
FANG Jin-Qing;YU Xing-Huo;CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method [J]. 中国物理快报, 2003, 20(12): 2110-2113.
[8]
ZHANG Guang-Cai;ZHANG Hong-Jun;. Control Method of Cooling a Charged Particle Pair in a Paul Trap [J]. 中国物理快报, 2003, 20(11): 1924-1927.
[9]
ZHENG Yong-Ai;NIAN Yi-Bei;LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System [J]. 中国物理快报, 2002, 19(9): 1251-1253.
[10]
LI Ke-Ping;CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor [J]. 中国物理快报, 2002, 19(7): 904-907.
[11]
ZHANG Hai-Yun; HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal
Chaotic Fields [J]. 中国物理快报, 2002, 19(4): 481-484.
[12]
ZHOU Xian-Rong;MENG Jie;;ZHAO En-Guang;. Spectral Statistics in the Cranking Model [J]. 中国物理快报, 2002, 19(2): 184-186.
[13]
LIN Sheng-Lu;ZHANG Qiu-Ju;ZHAO Ke;SONG Xiao-Hong;ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields [J]. 中国物理快报, 2002, 19(1): 29-31.
[14]
HE Kai-Fen. Time-Averaged Behaviour at the Critical Parameter Point of Transition to Spatiotemporal Chaos
[J]. 中国物理快报, 2001, 18(9): 1176-1178.
[15]
WANG Wen-Ge. Approximate Scaling Behaviour of Local Spectral Density of
States at Relatively Weak Perturbation: a Schematic Shell Model [J]. 中国物理快报, 2001, 18(6): 731-733.