Nonlinear Photocurrent Responses in Janus WSSe Monolayer
Meng Chen1†, Sheng-Bin Yu2,3†, Dong Zhang2,3, and Jun Li1*
1Department of Physics, Semiconductor Photonics Research Center, Xiamen University, Xiamen 361005, China 2SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Janus WSSe monolayer is a novel two-dimensional (2D) material that breaks the out-of-plane mirror symmetry and has a large built-in electric field. These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties, making it a promising material platform for various spintronic and optoelectronic device applications. In recent years, nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials, indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials. In this work, we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method. It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients, which is distinct from the non-Janus structures. Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field. Thus, the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.
Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li L J 2017 Nat. Nanotechnol.12 744
[11]
Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano11 8192
[12]
Lin Y C, Liu C, Yu Y, Zarkadoula E, Yoon M, Puretzky A A, Liang L, Kong X, Gu Y, Strasser A, Meyer H M, Lorenz M, Chisholm M F, Ivanov I N, Rouleau C M, Duscher G, Xiao K, and Geohegan D B 2020 ACS Nano14 3896
Trivedi D B, Turgut G, Qin Y, Sayyad M Y, Hajra D, Howell M, Liu L, Yang S, Patoary N H, Li H, Petrić M M, Meyer M, Kremser M, Barbone M, Soavi G, Stier A V, Müller K, Yang S, Esqueda I S, Zhuang H, Finley J J, and Tongay S 2020 Adv. Mater.32 2006320
[15]
Qin Y, Sayyad M, Montblanch A R P, Feuer M S G, Dey D, Blei M, Sailus R, Kara D M, Shen Y, Yang S, Botana A S, Atature M, and Tongay S 2022 Adv. Mater.34 2106222
Zheng T, Lin Y C, Yu Y L, Valencia-Acuna P, Puretzky A A, Torsi R, Liu C, Ivanov I N, Duscher G, Geohegan D B, Ni Z H, Xiao K, and Zhao H 2021 Nano Lett.21 931
[20]
Zhang K X, Guo Y F, Ji Q Q, Lu A Y, Su C, Wang H, Puretzky A A, Geohegan D B, Qian X F, Fang S, Kaxiras E, Kong J, and Huang S X 2020 J. Am. Chem. Soc.142 17499
Jürgens P, Liewehr B, Kruse B, Peltz C, Engel D, Husakou A, Witting T, Ivanov M, Vrakking M J J, Fennel T, and Mermillod-Blondin A 2020 Nat. Phys.16 1035
[30]
Qian C, Yu C, Jiang S C, Zhang T, Gao J C, Shi S, Pi H Q, Weng H M, and Lu R F 2022 Phys. Rev. X12 021030
Pizzi G, Vitale V, Arita R, Blügel S, Freimuth F, Géranton G, Gibertini M, Gresch D, Johnson C, Koretsune T, Iba N A J, Lee H, Lihm J M, Marchand D, Marrazzo A, Mokrousov Y, Mustafa J I, Nohara Y, Nomura Y, Paulatto L, Poncé S, Ponweiser T, Qiao J, Thöle F, Tsirkin S S, Wierzbowska M, Marzari N, Vanderbilt D, Souza I, Mostofi A A, and Yates J R 2020 J. Phys.: Condens. Matter32 165902