Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice
Jin-Yu Liu1,2 , Xiao-Qiong Wang3* , and Zhi-Fang Xu2,3*
1 Department of Physics, Harbin Institute of Technology, Harbin 150001, China2 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China3 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Abstract :Ultracold neutral atoms in higher bands of an optical lattice provide a natural avenue to emulate orbital physics in solid state materials. Here, we report the realization of $^{87}$Rb Bose–Einstein condensates in the fourth and seventh Bloch bands of a hexagonal boron-nitride optical lattice, exhibiting remarkably long coherence time through active cooling. Using band mapping spectroscopy, we observe that atoms condensed at the energy minimum of $\varGamma$ point ($K_{1}$ and $K_{2}$ points) in the fourth (seventh) band as sharp Bragg peaks. The lifetime for the condensate in the fourth (seventh) band is about 57.6 (4.8) ms, and the phase coherence of atoms in the fourth band persists for a long time larger than 110 ms. Our work thus offers great promise for studying unconventional bosonic superfluidity of neutral atoms in higher bands of optical lattices.
收稿日期: 2023-04-18
Editors' Suggestion
出版日期: 2023-07-21
PACS:
67.85.-d
(Ultracold gases, trapped gases)
37.10.Jk
(Atoms in optical lattices)
03.75.Lm
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
67.85.De
(Dynamic properties of condensates; excitations, and superfluid flow)
[1] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, and Sen U 2007 Adv. Phys. 56 243
[2] Bloch I 2005 Nat. Phys. 1 23
[3] Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885
[4] Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267
[5] Windpassinger P and Sengstock K 2013 Rep. Prog. Phys. 76 086401
[6] Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153
[7] Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann D S, Malomed B A, Sowiński T, and Zakrzewski J 2015 Rep. Prog. Phys. 78 066001
[8] Gross C and Bloch I 2017 Science 357 995
[9] Schäfer F, Fukuhara T, Sugawa S, Takasu Y, and Takahashi Y 2020 Nat. Rev. Phys. 2 411
[10] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[11] Tokura Y and Nagaosa N 2000 Science 288 462
[12] Khaliullin G 2005 Prog. Theor. Phys. Suppl. 160 155
[13] Liu W V and Wu C J 2006 Phys. Rev. A 74 013607
[14] Wu C J 2009 Mod. Phys. Lett. B 23 1
[15] Li X P and Liu W V 2016 Rep. Prog. Phys. 79 116401
[16] Kock T, Hippler C, Ewerbeck A, and Hemmerich A 2016 J. Phys. B 49 042001
[17] Wirth G, Ölschläger M, and Hemmerich A 2011 Nat. Phys. 7 147
[18] Ölschläger M, Kock T, Wirth G, Ewerbeck A, Smith C M, and Hemmerich A 2013 New J. Phys. 15 083041
[19] Kock T, Ölschläger M, Ewerbeck A, Huang W M, Mathey L, and Hemmerich A 2015 Phys. Rev. Lett. 114 115301
[20] Cai Z and Wu C 2011 Phys. Rev. A 84 033635
[21] Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, and Xu Z F 2021 Nature 596 227
[22] Wang X Q, Luo G Q, Liu J Y, Huang G H, Li Z X, Wu C, Hemmerich A, and Xu Z F 2022 arXiv:2211.05578 [cond-mat.quant-gas]
[23] Wu C J, Liu W V, Moore J, and Sarma S D 2006 Phys. Rev. Lett. 97 190406
[24] Ölschläger M, Wirth G, and Hemmerich A 2011 Phys. Rev. Lett. 106 015302
[25] Ölschläger M, Wirth G, Kock T, and Hemmerich A 2012 Phys. Rev. Lett. 108 075302
[26] Nuske M, Vargas J, Hachmann M, Eichberger R, Mathey L, and Hemmerich A 2020 Phys. Rev. Res. 2 043210
[27] Niu L X, Jin S J, Chen X Z, Li X P, and Zhou X J 2018 Phys. Rev. Lett. 121 265301
[28] Zhou X J, Jin S J, and Schmiedmayer J 2018 New J. Phys. 20 055005
[29] Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, and Li X P 2021 Phys. Rev. Lett. 126 035301
[30] Guo X X, Yu Z C, Peng P, Yin G L, Jin S J, Chen X Z, and Zhou X J 2021 Phys. Rev. A 104 033326
[31] Klafka T 2021 Ph.D. Dissertation (Universität Hamburg)
[32] Ilin A 2022 Ph.D. Dissertation (Universität Hamburg)
[33] Kosch M N, Asteria L, Zahn H P, Sengstock K, and Weitenberg C 2022 Phys. Rev. Res. 4 043083
[34] Liu J Y, Luo G Q, Wang X Q, Hemmerich A, and Xu Z F 2022 Opt. Express 30 44375
[35] Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, and Hemmerich A 2021 Phys. Rev. Lett. 127 033201
[36] Kiefer Y, Hachmann M, and Hemmerich A 2023 Nat. Phys. 19 794
[37] Paul S and Tiesinga E 2013 Phys. Rev. A 88 033615
[38] Martikainen J P 2011 Phys. Rev. A 83 013610
[39] Pinheiro F, Matrikainen J P, and Larson J 2015 New J. Phys. 17 053004
[40] Sharma V, Choudhury S, and Mueller E J 2020 Phys. Rev. A 101 033609
[41] Greiner M, Bloch I, Mandel O, Hänsch T W, and Esslinger T 2001 Phys. Rev. Lett. 87 160405
[42] Köhl M, Moritz H, Stöferle T, Günter K, and Esslinger T 2005 Phys. Rev. Lett. 94 080403
[43] Müller T, Fölling S, Widera A, and Bloch I 2007 Phys. Rev. Lett. 99 200405
[1]
. [J]. 中国物理快报, 2022, 39(9): 93202-.
[2]
. [J]. 中国物理快报, 2022, 39(7): 70304-.
[3]
. [J]. 中国物理快报, 2022, 39(7): 73201-.
[4]
. [J]. 中国物理快报, 2021, 38(5): 56701-.
[5]
. [J]. 中国物理快报, 2021, 38(3): 30301-.
[6]
. [J]. 中国物理快报, 2020, 37(5): 53702-053702.
[7]
. [J]. 中国物理快报, 2020, 37(2): 20301-.
[8]
. [J]. 中国物理快报, 2019, 36(9): 93701-.
[9]
. [J]. 中国物理快报, 2019, 36(7): 73401-.
[10]
. [J]. 中国物理快报, 2018, 35(12): 123701-.
[11]
. [J]. 中国物理快报, 2018, 35(8): 86701-.
[12]
. [J]. 中国物理快报, 2017, 34(2): 20501-020501.
[13]
. [J]. 中国物理快报, 2016, 33(08): 80303-080303.
[14]
. [J]. 中国物理快报, 2016, 33(07): 76701-076701.
[15]
. [J]. 中国物理快报, 2016, 33(07): 70306-070306.