1Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China 2Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China 3Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
Abstract:The recent discoveries of near-room-temperature superconductivity in clathrate hydrides present compelling evidence for the reliability of theory-orientated conventional superconductivity. Nevertheless, the harsh pressure conditions required to maintain such high $T_{\rm c}$ limit their practical applications. To address this challenge, we conducted extensive first-principles calculations to investigate the doping effect of the recently synthesized LaB$_{8}$ clathrate, intending to design high-temperature superconductors at ambient pressure. Our results demonstrate that these clathrates are highly promising for high-temperature superconductivity owing to the coexistence of rigid boron covalent networks and the tunable density of states at the Fermi level. Remarkably, the predicted $T_{\rm c}$ of BaB$_{8}$ could reach 62 K at ambient pressure, suggesting a significant improvement over the calculated $T_{\rm c}$ of 14 K in LaB$_{8}$. Moreover, further calculations of the formation enthalpies suggest that BaB$_{8}$ could be potentially synthesized under high-temperature and high-pressure conditions. These findings highlight the potential of doped boron clathrates as promising superconductors and provide valuable insights into the design of light-element clathrate superconductors.
Kamerlingh O H 1911 Commun. Phys. Lab. Univ. Leiden B120 261
[2]
Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V, and Hemley R J 2019 Phys. Rev. Lett.122 027001
[3]
Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature569 528
[4]
Kong P P, Minkov V S, Kuzovnikov M A, Drozdov A P, Besedin S P, Mozaffari S, Balicas L, Balakirev F F, Prakapenka V B, Chariton S, Knyazev D A, Greenberg E, and Eremets M I 2021 Nat. Commun.12 5075
Li Z W, He X, Zhang C L, Wang X C, Zhang S J, Jia Y T, Feng S M, Lu K, Zhao J F, Zhang J, Min B, Long Y, Yu R, Wang L, Ye M, Zhang Z, Prakapenka V, Chariton S, Ginsberg P A, Bass J, Yuan S, Liu H, and Jin C 2022 Nat. Commun.13 2863
Connétable D, Timoshevskii V, Masenelli B, Beille J, Marcus J, Barbara B, Saitta A M, Rignanese G M, Mélinon P, Yamanaka S, and Blase X 2003 Phys. Rev. Lett.91 247001
Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V, Chalou B L, Epshteyn A, Cohen R E, and Strobel T A 2020 Sci. Adv.6 eaay8361
[20]
Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney-Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E, and Strobel T A 2023 Phys. Rev. Res.5 013012
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, and Dabo I 2009 J. Phys.: Condens. Matter21 395502