Abstract:We experimentally investigate nonlinear Hall effect as zero-frequency and second-harmonic transverse voltage responses to ac electric current for topological semimetal GeTe. A thick single-crystal GeTe flake is placed on the Si/SiO$_2$ substrate, where the p-doped Si layer serves as a gate electrode. We confirm that electron concentration is not gate-sensitive in thick GeTe flakes due to the gate field screening by bulk carriers. In contrast, by transverse voltage measurements, we demonstrate that the nonlinear Hall effect shows pronounced dependence on the gate electric field at room temperature. Since the nonlinear Hall effect is a direct consequence of a Berry curvature dipole in topological media, our observations indicate that Berry curvature can be controlled by the gate electric field. This experimental observation can be understood as a result of the known dependence of giant Rashba splitting on the external electric field in GeTe. For possible applications, the zero-frequency gate-controlled nonlinear Hall effect can be used for the efficient broad-band rectification.
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
引用本文:
. [J]. 中国物理快报, 2023, 40(7): 77302-.
N. N. Orlova, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Gate-Dependent Nonlinear Hall Effect at Room Temperature in Topological Semimetal GeTe. Chin. Phys. Lett., 2023, 40(7): 77302-.
Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M, and Eom C B 2016 Nature533 68
[17]
Fei Z Y, Zhao W J, Palomaki T A, Sun B, Miller M K, Zhao Z Y, Yan J Q, Xu X D, and Cobden D H 2018 Nature560 336
[18]
Ma Q, Xu S Y, Shen H, MacNeill D, Fatemi V, Chang T R, Valdivia A M M, Wu S F, Du Z Z, Hsu C H, Fang S, Gibson Q D, Watanabe K, Taniguchi T, Cava R J, Kaxiras E, Lu H Z, Lin H, Fu L, Gedik N, and Jarillo-Herrero P 2019 Nature565 337
Varotto S, Nessi L, Cecchi S, awińska J S, Noël P, Petrò S, Fagiani F, Novati A, Cantoni M, Petti D, Albisetti E, Costa M, Calarco R, Nardelli M B, Bibes M, Picozzi S, Attané J P, Vila L, Bertacco R, and Rinaldi C 2021 Nat. Electron.4 740
Liebmann M, Rinaldi C, Di Sante D, Kellner J, Pauly C, Wang R N, Boschker J E, Giussani A, Bertoli S, Cantoni M, Baldrati L, Asa M, Vobornik I, Panaccione G, Marchenko D, Sánchez-Barriga J, Rader O, Calarco R, Picozzi S, Bertacco R, Morgenstern M 2016 Adv. Mater.28 560
[32]
Krempaský J, Volfová H, Muff S, Pilet N, Landolt G, Radović M, Shi M, Kriegner D, Holý V, Braun J, Ebert H, Bisti F, Rogalev V A, Strocov V N, Springholz G, Minár J, and Dil J H 2016 Phys. Rev. B94 205111
Krempaský J, Nicolaï L, Gmitra M, Chen H, Fanciulli M, Guedes E B, Caputo M, Radović M, Volobuev V V, Caha O, Springholz G, Minár J, and Dil J H 2021 Phys. Rev. Lett.126 206403
[35]
Rinaldi C, Varotto S, Asa M, awinska J S, Fujii J, Vinai G, Cecchi S, Di Sante D, Calarco R, Vobornik I, Panaccione G, Picozzi S, and Bertacco R 2018 Nano Lett.18 2751
Fu C, Scaffidi T, Waissman J, Sun Y, Saha R, Watzman S J, Srivastava A K, Li G, Schnelle W, Werner P, Kamminga M E, Sachdev S, Parkin S S P, Hartnoll S A, Felser C, Gooth J 2018 arXiv:1802.09468 [cond-mat.mtrl-sci]