Possible Room-Temperature Ferromagnetic Semiconductors
Jing-Yang You1*, Xue-Juan Dong2, Bo Gu3*, and Gang Su3*
1Department of Physics, Faculty of Science, National University of Singapore, 117551, Singapore 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3Kavli Institute for Theoretical Sciences, and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract:Magnetic semiconductors integrate the dual characteristics of magnets and semiconductors. It is difficult to manufacture magnetic semiconductors that function at room temperature. Here, we review a series of our recent theoretical predictions on room-temperature ferromagnetic semiconductors. Since the creation of two-dimensional (2D) magnetic semiconductors in 2017, there have been numerous developments in both experimental and theoretical investigations. By density functional theory calculations and model analysis, we recently predicted several 2D room-temperature magnetic semiconductors, including CrGeSe$_3$ with strain, CrGeTe$_3$/PtSe$_2$ heterostructure, and technetium-based semiconductors (TcSiTe$_3$, TcGeSe$_3$, and TcGeTe$_3$), as well as PdBr$_3$ and PtBr$_3$ with a potential room-temperature quantum anomalous Hall effect. Our findings demonstrated that the Curie temperature of these 2D ferromagnetic semiconductors can be dramatically enhanced by some external fields, such as strain, construction of heterostructure, and electric field. In addition, we proposed appropriate doping conditions for diluted magnetic semiconductors, and predicted the Cr doped GaSb and InSb as possible room-temperature magnetic semiconductors.
Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett.39 128501
Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature546 270
[15]
Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature546 265
Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, and Uemura Y J 2011 Nat. Commun.2 422
[23]
Deng Z, Zhao K, Gu B, Han W, Zhu J L, Wang X C, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Zhang J, Wang Y, Ning F L, Maekawa S, Uemura Y J, and Jin C Q 2013 Phys. Rev. B88 081203
[24]
Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, and Jin C Q 2013 Nat. Commun.4 1442
Kudrin A V, Danilov Y A, Lesnikov V P, Dorokhin M V, Vikhrova O V, Pavlov D A, Usov Y V, Antonov I N, Kriukov R N, Alaferdov A V, and Sobolev N A 2017 J. Appl. Phys.122 183901
Guo S L, Man H Y, Wang K, Ding C, Zhao Y, Fu L C, Gu Y L, Zhi G X, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H, Deng Z, Jin C Q, Uemura Y J, and Ning F 2019 Phys. Rev. B99 155201
Pham Y T H, Liu M, Jimenez V O, Yu Z, Kalappattil V, Zhang F, Wang K, Williams T, Terrones M, and Phan M H 2020 Adv. Mater.32 2003607
[36]
Zhang F, Zheng B, Sebastian A, Olson D H, Liu M, Fujisawa K, Pham Y T H, Jimenez V O, Kalappattil V, Miao L, Zhang T, Pendurthi R, Lei Y, Elías A L, Wang Y, Alem N, Hopkins P E, Das S, Crespi V H, Phan M H, and Terrones M 2020 Adv. Sci.7 2001174
[37]
Zhang G J, Wu H, Zhang L, Zhang S F, Yang L, Gao P F, Wen X, Jin W, Guo F, Xie Y M, Li H D, Tao B R, Zhang W F, and Chang H X 2022 Adv. Sci.9 2103173
Han W, Chen B J, Gu B, Zhao G Q, Yu S, Wang X C, Liu Q Q, Deng Z, Li W M, Zhao J F, Cao L P, Peng Y, Shen X, Zhu X H, Yu R C, Maekawa S, Uemura Y J, and Jin C Q 2019 Sci. Rep.9 7490
Chang C Z, Zhang J, Liu M, Zhang Z, Feng X, Li K, Wang L L, Chen X, Dai X, Fang Z, Qi X L, Zhang S C, Wang Y, He K, Ma X C, and Xue Q K 2013 Adv. Mater.25 1065
[62]
Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C, and Xue Q K 2013 Science340 167
[63]
Chang C Z, Zhao W, Kim D Y, Zhang H, Assaf B A, Heiman D, Zhang S C, Liu C, Chan M H W, and Moodera J S 2015 Nat. Mater.14 473
[64]
Ou Y B, Liu C, Jiang G Y, Feng Y, Zhao D Y, Wu W, Wang X X, Li W, Song C, Wang L L, Wang W, Wu W, Wang Y, He K, Ma X C, and Xue Q K 2017 Adv. Mater.30 1703062
Xing W Y, Chen Y Y, Odenthal P M, Zhang X, Yuan W, Su T, Song Q, Wang T Y, Zhong J G, Jia S, Xie X C, Li Y, and Han W 2017 2D Mater.4 024009
[94]
Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol.13 544
Wang Z, Zhang T Y, Ding M, Dong B J, Li Y X, Chen M L, Li X X, Huang J Q, Wang H W, Zhao X T, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, and Zhang Z 2018 Nat. Nanotechnol.13 554
[97]
Song T C, Tu M W Y, Carnahan C, Cai X H, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X D 2019 Nano Lett.19 915