Gate-Tunable Negative Differential Conductance in Hybrid Semiconductor–Superconductor Devices
Ming-Li Liu1,2†, Dong Pan3†, Tian Le1, Jiang-Bo He1, Zhong-Mou Jia1,2, Shang Zhu1,2, Guang Yang1, Zhao-Zheng Lyu1, Guang-Tong Liu1,4, Jie Shen1,4, Jian-Hua Zhao3*, Li Lu1,2,4*, and Fan-Ming Qu1,2,4*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 4Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:Negative differential conductance (NDC) serves as a crucial characteristic that reveals various underlying physics and transport process in hybrid superconducting devices. We report the observation of gate-tunable NDC outside the superconducting energy gap on two types of hybrid semiconductor–superconductor devices, i.e., normal metal–superconducting nanowire–normal metal and normal metal–superconducting nanowire–superconductor devices. Specifically, we study the dependence of the NDCs on back-gate voltage and magnetic field. When the back-gate voltage decreases, these NDCs weaken and evolve into positive differential conductance dips; and meanwhile they move away from the superconducting gap towards high bias voltage, and disappear eventually. In addition, with the increase of magnetic field, the NDCs/dips follow the evolution of the superconducting gap, and disappear when the gap closes. We interpret these observations and reach a good agreement by combining the Blonder–Tinkham–Klapwijk (BTK) model and the critical supercurrent effect in the nanowire, which we call the BTK-supercurrent model. Our results provide an in-depth understanding of the tunneling transport in hybrid semiconductor–superconductor devices.
Deng M T, Vaitiekėnas S, Prada E, San-Jose P, Nygård J, Krogstrup P, Aguado R, and Marcus C M 2018 Phys. Rev. B98 085125
[12]
Sestoft J E, Kanne T, Gejl A N, von Soosten M, Yodh J S, Sherman D, Tarasinski B, Wimmer M, Johnson E, Deng M, Nygård J, Jespersen T S, Marcus C M, and Krogstrup P 2018 Phys. Rev. Mater.2 044202
[13]
Jünger C, Delagrange R, Chevallier D, Lehmann S, Dick K A, Thelander C, Klinovaja J, Loss D, Baumgartner A, and Schönenberger C 2020 Phys. Rev. Lett.125 017701
[14]
Nichele F, Portoles E, Fornieri A, Whiticar A M, Drachmann A C C, Gronin S, Wang T, Gardner G C, Thomas C, Hatke A T, Manfra M J, and Marcus C M 2020 Phys. Rev. Lett.124 226801
[15]
Prada E, San-Jose P, de Moor M W A, Geresdi A, Lee E J H, Klinovaja J, Loss D, Nygård J, Aguado R, and Kouwenhoven L P 2020 Nat. Rev. Phys.2 575
[16]
Valentini M, Penaranda F, Hofmann A, Brauns M, Hauschild R, Krogstrup P, San-Jose P, Prada E, Aguado R, and Katsaros G 2021 Science373 82
Puglia D, Martinez E A, Ménard G C, Pöschl A, Gronin S, Gardner G C, Kallaher R, Manfra M J, Marcus C M, Higginbotham A P, and Casparis L 2021 Phys. Rev. B103 235201
He J B, Pan D, Yang G, Liu M L, Ying J H, Lyu Z, Fan J, Jing X N, Liu G T, Lu B, Liu D E, Zhao J H, Lu L, and Qu F M 2020 Phys. Rev. B102 075121
[34]
Su Z, Zarassi A, Hsu J F, San-Jose P, Prada E, Aguado R, Lee E J H, Gazibegovic S, Op H V R L M, Car D, Plissard S R, Hocevar M, Pendharkar M, Lee J S, Logan J A, Palmstrom C J, Bakkers E, and Frolov S M 2018 Phys. Rev. Lett.121 127705
[35]
Higginbotham A P, Albrecht S M, Kiršanskas G, Chang W, Kuemmeth F, Krogstrup P, Jespersen T S, Nygård J, Flensberg K, and Marcus C M 2015 Nat. Phys.11 1017
[36]
Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygard J, Krogstrup P, and Marcus C M 2016 Nature531 206
[37]
Shen J, Heedt S, Borsoi F, van Heck B, Gazibegovic S, Op H V R L M, Car D, Logan J A, Pendharkar M, Ramakers S J J, Wang G, Xu D, Bouman D, Geresdi A, Palmstrom C J, Bakkers E, and Kouwenhoven L P 2018 Nat. Commun.9 4801
[38]
Whiticar A M, Fornieri A, O'Farrell E C T, Drachmann A C C, Wang T, Thomas C, Gronin S, Kallaher R, Gardner G C, Manfra M J, Marcus C M, and Nichele F 2020 Nat. Commun.11 3212
[39]
Pan D, Song H D, Zhang S, Liu L, Wen L J, Liao D Y, Zhuo R, Wang Z C, Zhang Z T, Yang S, Ying J H, Miao W T, Shang R N, Zhang H, and Zhao J H 2022 Chin. Phys. Lett.39 058101
[40]
Valentini M, Borovkov M, Prada E, Marti-Sanchez S, Botifoll M, Hofmann A, Arbiol J, Aguado R, San-Jose P, and Katsaros G 2022 Nature612 442
Dvoranová M, Plecenik T, Moško M, Vidiš M, Gregor M, Roch T, Grančič B, Satrapinskyy L, Kúš P, and Plecenik A 2018 AIP Adv.8 125217
[47]
He G, Wei Z X, Brisbois J, Jia Y L, Huang Y L, Zhou H X, Ni S L, Silhanek A V, Shan L, Zhu B Y, Yuan J, Dong X L, Zhou F, Zhao Z X, and Jin K 2018 Chin. Phys. B27 047403
[48]
Romano P, Avitabile F, Nigro A, Grimaldi G, Leo A, Shu L, Zhang J, Di Bartolomeo A, and Giubileo F 2020 Nanomaterials10 1810
[49]
Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N, and Shan L 2020 Phys. Rev. B102 085139