Magnetic Phase Transition in Strained Two-Dimensional CrSeTe Monolayer
Zhiqiang Ji†, Tian Huang†, Ying Li, Xiaoyu Liu, Lujun Wei, Hong Wu, Jimeng Jin*, Yong Pu*, and Feng Li*
New Energy Technology Engineering Laboratory of Jiangsu Provence & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Abstract:Tunable magnetic phase transition in two-dimensional materials is a fascinating subject of research. We perform first-principle calculations based on density functional theory to clarify the magnetic property of CrSeTe monolayer modulated by the biaxial compressive strain. Based on the stable structure confirmed by the phonon calculation, CrSeTe is determined to be a ferromagnetic metal that undergoes a phase transition from a ferromagnetic state to an antiferromagnetic state with nearly 2.75% compressive strain. We identify the stress-magnetism behavior originating from the changes in interactions between the nearest-neighboring Cr atoms ($J_{1}$) and the next-nearest-neighboring Cr atoms ($J_{2}$). Through Monte Carlo simulation, we find that the Curie temperature of the CrSeTe monolayer is 160 K. The CrSeTe monolayer could be an intriguing platform for the two-dimensional systems and potential spintronic material.
Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature546 265
[5]
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature546 270
[6]
Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature563 94
Lin M W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, and Xiao K 2016 J. Mater. Chem. C4 315
McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, Cooper V R, Xu X, and Sales B C 2017 Phys. Rev. Mater.1 014001
[11]
Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li J L 2017 Nat. Nanotechnol.12 744
[12]
Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano11 8192
[13]
Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Yu Y, Huang Y, Xu X, Duan X, Ji W, and Duan X 2021 Nat. Mater.20 818
Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, and Zhong S Y 2020 Nano Res.13 3358
[16]
Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun.12 2492
Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett.39 128501
Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patane A, Zutic I, Li S, Zheng H, and Wang K 2021 Adv. Mater.33 e2104658