A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery
Quan Li1,2, Yang Yang1,2,3, Xiqian Yu1,2,3*, and Hong Li1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 101400, China 3Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:High-energy-density rechargeable lithium batteries are being pursued by researchers because of their revolutionary potential nature. Current advanced practical lithium-ion batteries have an energy density of around 300 W$\cdot$h$\cdot$kg$^{-1}$. Continuing to increase the energy density of batteries to a higher level could lead to a major explosion development in some fields, such as electric aviation. Here, we have manufactured practical pouch-type rechargeable lithium batteries with both a gravimetric energy density of 711.3 W$\cdot$h$\cdot$kg$^{-1}$ and a volumetric energy density of 1653.65 W$\cdot$h$\cdot$L$^{-1}$. This is achieved through the use of high-performance battery materials including high-capacity lithium-rich manganese-based cathode and thin lithium metal anode with high specific energy, combined with extremely advanced process technologies such as high-loading electrode preparation and lean electrolyte injection. In this battery material system, the structural stability of cathode material in a widened charge/discharge voltage range and the deposition/dissolution behavior of interfacial modified thin lithium electrode are studied.
. [J]. 中国物理快报, 2023, 40(4): 48201-048201.
Quan Li, Yang Yang, Xiqian Yu, and Hong Li. A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery. Chin. Phys. Lett., 2023, 40(4): 48201-048201.
Pham M T M, Darst J J, Walker W Q, Heenan T M M, Patel D, Iacoviello F, Rack A, Olbinado M P, Hinds G, Brett D J L, Darcy E, Finegan D P, and Shearing P R 2021 Cell Rep. Phys. Sci.2 100360
[19]
Xiong R Y, Zhang Y, Wang Y M, Song L, Li M Y, Yang H, Huang Z G, Li D Q, and Zhou H M 2021 Small Methods5 2100280
Chen J, Fan X L, Li Q, Yang H B, Khoshi M R, Xu Y B, Hwang S, Chen L, Ji X, Yang C Y, He H X, Wang C M, Garfunkel E, Su D, Borodin O, and Wang C S 2020 Nat. Energy5 386
[22]
Yin W, Grimaud A, Rousse G, Abakumov A M, Senyshyn A, Zhang L T, Trabesinger S, Iadecola A, Foix D, Giaume D, and Tarascon J M 2020 Nat. Commun.11 1252
[23]
Huang W Y, Yang L Y, Chen Z F, Liu T C, Ren G X, Shan P Z, Zhang B W, Chen S M, Li S N, Li J Y, Lin C, Zhao W G, Qiu J M, Fang J J, Zhang M J, Dong C, Li F, Yang Y, Sun C J, Ren Y, Huang Q Z, Hou G J, Dou S X, Lu J, Amine K, and Pan F 2022 Adv. Mater.34 2202745
[24]
Niu C J, Pan H L, Xu W, Xiao J, Zhang J G, Luo L L, Wang C M, Mei D H, Meng J S, Wang X P, Liu Z A, Mai L, and Liu J 2019 Nat. Nanotechnol.14 594
[25]
Louli A J, Eldesoky A, Weber R, Genovese M, Coon M, deGooyer J, Deng Z, White R T, Lee J, Rodgers T, Petibon R, Hy S, Cheng S J H, and Dahn J R 2020 Nat. Energy5 693
[26]
Ou X, Liu T C, Zhong W T, Fan X M, Guo X Y, Huang X J, Cao L, Hu J H, Zhang B, Chu Y S, Hu G R, Lin Z, Dahbi M, Alami J, Amine K, Yang C H, and Lu J 2022 Nat. Commun.13 2319
Cao X, Ren X D, Zou L F, Engelhard M H, Huang W, Wang H, Matthews B E, Lee H K, Niu C J, Arey B W, Cui Y, Wang C M, Xiao J, Liu J, Xu W, and Zhang J G 2019 Nat. Energy4 796
[29]
Kondori A, Esmaeilirad M, Harzandi A M, Amine R, Saray M T, Yu L, Liu T C, Wen J G, Shan N N, Wang H H, Ngo A T, Redfern P C, Johnson C S, Amine K, Shahbazian-Yassar R, Curtiss L A, and Asadi M 2023 Science379 499