Controlling Magnetic and Electric Nondipole Effects with Synthesized Two Perpendicularly Propagating Laser Fields
Yankun Dou1, Yiqi Fang1, Peipei Ge1, and Yunquan Liu1,2,3*
1State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China 2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China 3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract:Nondipole effects are ubiquitous and crucial in light-matter interaction. However, they are too weak to be directly observed. In strong-field physics, motion of electrons is mainly confined in transverse plane of light fields, which suppresses the significance of nondipole effects. Here, we present a theoretical study on enhancing and controlling the nondipole effect by using the synthesized two perpendicularly propagating laser fields. We calculate the three-dimensional photoelectron momentum distributions of strong-field tunneling ionization of hydrogen atoms using the classical trajectory Monte Carlo model and show that the nondipole effects are noticeably enhanced in such laser fields due to their remarkable influences on the sub-cycle photoelectron dynamics. In particular, we reveal that the magnitudes of the magnetic and electric components of nondipole effects can be separately controlled by modulating the ellipticity and amplitude of driving laser fields. This novel scenario holds promising applications for future studies with ultrafast structured light fields.