Molecular Nature of $X(3872)$ in $B^0 \to K^0 X(3872)$ and $B^+ \to K^+ X(3872)$ Decays
Hao-Nan Wang1,2 , Li-Sheng Geng3,4,5 , Qian Wang1,6,7 , and Ju-Jun Xie2,8*
1 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China3 Peng Huanwu Collaborative Center for Research and Education, Beihang University, Beijing 100191, China4 School of Physics, Beihang University, Beijing 102206, China5 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 102206, China6 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China7 Theoretical Physics Center for Science Facilities, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China8 School of Nuclear Sciences and Technology, University of Chinese Academy of Sciences, Beijing 101408, China
Abstract :We investigate the decays of $B^0 \to K^0 X(3872)$ and $B^+ \to K^+ X(3872)$ based on the picture where the $X(3872)$ resonance is strongly coupled to the $D\bar{D}^* + c.c.$ channel. In addition to the decay mechanism where the $X(3872)$ resonance is formed from the $c\bar{c}$ pair hadronization with the short-distance interaction, we have also considered the $D\bar{D}^*$ rescattering diagrams in the long-distance scale, where $D$ and $\bar{D}^*$ are formed from $c$ and $\bar{c}$ separately. Because of the difference of the mass thresholds of charged and neutral $D\bar{D}^*$ channels, and the rather narrow width of the $X(3872)$ resonance, at the $X(3872)$ mass, the loop functions of $D^0\bar{D}^{*0}$ and $D^+\bar{D}^{*-}$ are much different. Taking this difference into account, the ratio of $\mathcal{B}[B^0\to K^0X(3872)]/\mathcal{B}[B^+ \to K^+ X(3872)] \simeq 0.5$ can be naturally obtained. Based on this result, we also evaluate the decay widths of $B_s^0 \to \eta(\eta') X(3872)$. It is expected that future experimental measurements of these decays can be used to elucidate the nature of the $X(3872)$ resonance.
收稿日期: 2022-12-05
出版日期: 2023-01-17
[1] Choi S K et al. [Belle] 2003 Phys. Rev. Lett. 91 262001
[2] Acosta D et al. [CDF] 2004 Phys. Rev. Lett. 93 072001
[3] Abazov V M et al. [D0] 2004 Phys. Rev. Lett. 93 162002
[4] Abulencia A et al. [CDF] 2007 Phys. Rev. Lett. 98 132002
[5] Aubert B et al. [BaBar] 2008 Phys. Rev. D 77 111101
[6] Aaltonen T et al. [CDF] 2009 Phys. Rev. Lett. 103 152001
[7] Aaij R et al. [LHCb] 2012 Eur. Phys. J. C 72 1972
[8] Chatrchyan S et al. [CMS] 2013 J. High Energy Phys. 2013(04) 154
[9] Aaij R et al. [LHCb] 2013 Phys. Rev. Lett. 110 222001
[10] Aaij R et al. [LHCb] 2015 Phys. Rev. D 92 011102
[11] Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, and Zou B S 2018 Rev. Mod. Phys. 90 015004 [Erratum: 2022 Rev. Mod. Phys. 94 029901 ]
[12] Liu Y R, Chen H X, Chen W, Liu X, and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[13] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, and Yuan C Z 2020 Phys. Rep. 873 1
[14] Barnes T and Godfrey S 2004 Phys. Rev. D 69 054008
[15] Barnes T, Godfrey S, and Swanson E S 2005 Phys. Rev. D 72 054026
[16] Workman R L et al. (Particle Data Group) 2022 Prog. Theor. Exp. Phys. 2022 083C01
[17] Guo F K 2019 Phys. Rev. Lett. 122 202002
[18] LHCb collaboration 2022 arXiv:2204.12597 [hep-ex]
[19] Wang H N, Wang Q, and Xie J J 2022 Phys. Rev. D 106 056022
[20] Yuan C Z 2022 arXiv:2211.07217 [hep-ph]
[21] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2022 arXiv:2204.02649 [hep-ph]
[22] Dong X K, Guo F K, and Zou B S 2021 Commun. Theor. Phys. 73 125201
[23] Guo F K, Liu X H, and Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757
[24] Ali A, Lange J S, and Stone S 2017 Prog. Part. Nucl. Phys. 97 123
[25] Olsen S L, Skwarnicki T, and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[26] Esposito A, Pilloni A, and Polosa A D 2017 Phys. Rep. 668 1
[27] Chen H X, Chen W, Liu X, and Zhu S L 2016 Phys. Rep. 639 1
[28] Lebed R F, Mitchell R E, and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[29] Maiani L, Piccinini F, Polosa A D, and Riquer V 2005 Phys. Rev. D 71 014028
[30] Ebert D, Faustov R N, and Galkin V O 2006 Phys. Lett. B 634 214
[31] Matheus R D, Narison S, Nielsen M, and Richard J M 2007 Phys. Rev. D 75 014005
[32] Maiani L, Polosa A D, and Riquer V 2018 Phys. Lett. B 778 247
[33] Wang J B, Li G, An C S, Deng C R, and Xie J J 2022 Eur. Phys. J. C 82 721
[34] Esposito A, Maiani L, Pilloni A, Polosa A D, and Riquer V 2022 Phys. Rev. D 105 L031503
[35] Baru V, Dong X K, Du M L, Filin A, Guo F K, Hanhart C, Nefediev A, Nieves J, and Wang Q 2022 Phys. Lett. B 833 137290
[36] Du M L, Baru V, Dong X K, Filin A, Guo F K, Hanhart C, Nefediev A, Nieves J, and Wang Q 2022 Phys. Rev. D 105 014024
[37] Wang W and Zhao Q 2016 Phys. Lett. B 755 261
[38] Ablikim M et al. [BESIII] 2020 Phys. Rev. Lett. 124 242001
[39] Ferretti J, Galatà G, and Santopinto E 2014 Phys. Rev. D 90 054010
[40] Braaten E, He L P, and Ingles K 2020 Phys. Rev. D 101 014021
[41] Braaten E, He L P, Ingles K, and Jiang J 2020 Phys. Rev. D 101 096020
[42] Gamermann D and Oset E 2009 Phys. Rev. D 80 014003
[43] Li N and Zhu S L 2012 Phys. Rev. D 86 074022
[44] Meng L, Wang G J, Wang B, and Zhu S L 2021 Phys. Rev. D 104 094003
[45] Suzuki M 2005 Phys. Rev. D 72 114013
[46] Liu X, Zhang B, and Zhu S L 2007 Phys. Lett. B 645 185
[47] Gamermann D, Nieves J, Oset E, and Arriola E R 2010 Phys. Rev. D 81 014029
[48] Coito S, Rupp G, and van Beveren E 2011 Eur. Phys. J. C 71 1762
[49] Albaladejo M, Guo F K, Hidalgo-Duque C, Nieves J, and Valderrama M P 2015 Eur. Phys. J. C 75 547
[50] Wu Q, Chen D Y, and Matsuki T 2021 Eur. Phys. J. C 81 193
[51] Montaña G, Ramos A, Tolos L, and Torres-Rincon J M 2022 arXiv:2211.01896 [hep-ph]
[52] Liu Y R, Liu X, Deng W Z, and Zhu S L 2008 Eur. Phys. J. C 56 63
[53] Liu M Z, Wu T W, Valderrama M P, Xie J J, and Geng L S 2019 Phys. Rev. D 99 094018
[54] Ji T, Dong X K, Albaladejo M, Du M L, Guo F K, and Nieves J 2022 Phys. Rev. D 106 094002
[55] Wang Y, Wu Q, Li G, Qin W H, Liu X H, An C S, and Xie J J 2022 Phys. Rev. D 106 074015
[56] Sirunyan A M et al. [CMS] 2020 Phys. Rev. Lett. 125 152001
[57] Lees J P et al. [BaBar] 2020 Phys. Rev. Lett. 124 152001
[58] Maiani L, Polosa A D, and Riquer V 2020 Phys. Rev. D 102 034017
[59] Ovsiannikova T A, Belyaev I M, and Golubkov D Y 2021 Phys. At. Nucl. 84 1910
[60] Zhang Z Q, Guan Z L, Zhao Y C, Zhang Z Y, Sun Z J, Wang N, and Ren X D 2022 arXiv:2208.07990 [hep-ph]
[61] Yan M J, Ge Y H, and Liu X H 2022 arXiv:2208.03943 [hep-ph]
[62] Oset E, Liang W H, Bayar M, Xie J J, Dai L R, Albaladejo M, Nielsen M, Sekihara T, Navarra F, Roca L et al. 2016 Int. J. Mod. Phys. E 25 1630001
[63] Liang W H, Xie J J, and Oset E 2015 Phys. Rev. D 92 034008
[64] Liang W H, Xie J J, Oset E, Molina R, and Döring M 2015 Eur. Phys. J. A 51 58
[65] Xie J J and Li G 2018 Eur. Phys. J. C 78 861
[66] Liu X H, Yan M J, Ke H W, Li G, and Xie J J 2020 Eur. Phys. J. C 80 1178
[67] Liu M Z, Ling X Z, Geng L S, E W, and Xie J J 2022 arXiv:2209.01103 [hep-ph]
[68] Choi S K et al. [Belle] 2011 Phys. Rev. D 84 052004
[69] Braaten E and Kusunoki M 2005 Phys. Rev. D 71 074005
[70] Braaten E and Kusunoki M 2004 Phys. Rev. D 69 074005
[71] Chau L L and Cheng H Y 1987 Phys. Rev. D 36 137
[72] Gamermann D and Oset E 2007 Eur. Phys. J. A 33 119
[73] Bramon A, Grau A, and Pancheri G 1992 Phys. Lett. B 283 416
[74] Miyahara K, Hyodo T, Oka M, Nieves J, and Oset E 2017 Phys. Rev. C 95 035212
[75] Guo F K, Ping R G, Shen P N, Chiang H C, and Zou B S 2006 Nucl. Phys. A 773 78
[76] Gu X W, Duan C G, and Guo Z H 2018 Phys. Rev. D 98 034007
[77] Gao R, Guo Z H, Oller J A, and Zhou H Q 2022 arXiv:2211.02867 [hep-ph]
[78] Guo F K, Hidalgo-Duque C, Nieves J, Ozpineci A, and Valderrama M P 2014 Eur. Phys. J. C 74 2885
[1]
CHANG Qin1,2** , HAN Lin1 , YANG Ya-Dong1,3 . Effects of Anomalous Tensor Couplings in Bs 0 −B s 0 Mixing [J]. 中国物理快报, 2012, 29(3): 31302-031302.
[2]
CHANG Qin;WANG Ru-Min;XU Yuan-Guo;CUI Xiao-Wei
. Large Dimuon Asymmetry and a Non-Universal Z′ Boson in the Bs −B s System [J]. 中国物理快报, 2011, 28(8): 81301-081301.
[3]
WANG Shuai-Wei;HUANG Jin-Shu;LÜLin-Xia
. Bs → φπ0 Decay in the Extra Down-Type Quark Model [J]. 中国物理快报, 2010, 27(12): 121301-121301.
[4]
GAO Yuan-Ning;;HE Ji-Bo;;Patrick Robbe;Marie-HéléneSchune;YANG Zhen-Wei;
. Experimental Prospects of the B_c Studies of the LHCb Experiment [J]. 中国物理快报, 2010, 27(6): 61302-061302.
[5]
ZHANG Jin-Mei;WANG Guo-Li. Bs Semileptonic Decays to Ds and Ds * in Bethe--Salpeter Method [J]. 中国物理快报, 2010, 27(5): 51301-051301.
[6]
WANG Shuai-Wei;SONG Tai-Ping;LÜLin-Xia. B→ηK* and B→ΦKS Decays in the Two Higgs Doublet Model III [J]. 中国物理快报, 2008, 25(8): 2827-2830.
[7]
LIU Shao-Min;JIN Hong-Ying. A Simply Modified Single Pole Scenario For B→K* Form Factors [J]. 中国物理快报, 2008, 25(7): 2421-2424.
[8]
LIU Shao-Min;JIN Hong-Ying;LI Xue-Qian. Analysis on B→VV with the Flavour SU(3) Symmetry [J]. 中国物理快报, 2008, 25(7): 2417-2420.
[9]
WANG Shuai-Wei;SONG Tai-Ping;LU Gong-Ru;ZHONG Zhi-Guo. Analysis of Bd →ψ KS CP Asymmetry in a Flavour Changing Z' Model [J]. 中国物理快报, 2007, 24(10): 2777-2780.
[10]
Lü Cai-Dian;SHEN Yue-Long;WANG Wei. Role of Electromagnetic Dipole Operator in the Electroweak Penguin Dominated Vector Meson Decays of B Meson [J]. 中国物理快报, 2006, 23(10): 2684-2687.
[11]
GAO Ying-Jia;ZHANG Yu-Jie;CHAO Kuang-Ta. Radiative Decays of Charmonium into Light Mesons [J]. 中国物理快报, 2006, 23(9): 2376-2378.
[12]
WU Xiang-Yao;LI Zuo-Hong;CUI Jian-Ying;HUANG Tao. Impacts of the Soft-Gluon Exchanges on B →ππ Decays [J]. 中国物理快报, 2002, 19(11): 1596-1598.
[13]
GUO Li-Bo;DU Dong-Sheng. Perturbative Quantum Chromodynamics Effects in Bc →PP Decays [J]. 中国物理快报, 2001, 18(4): 498-500.
[14]
WU Yue-liang. Probing New Physics from CP Violation in Radiative B Decays [J]. 中国物理快报, 1999, 16(5): 339-341.
[15]
DAI Yuan-ben;HUANG Chao-shang;HUANG Ming-qiu;JIN Hong-ying;LIU Chun. Decay Widths of Excited Heavy Mesons from Quantum Chromodynamics
Sum Rules in the Infinite Mass Limit [J]. 中国物理快报, 1998, 15(8): 558-560.