Dynamic Nonreciprocity with a Kerr Nonlinear Resonator
Rui-Kai Pan1, Lei Tang1,2*, Keyu Xia1,3,4*, and Franco Nori5,6
1College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China 3Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China 4Shishan Laboratory, Suzhou Campus of Nanjing University, Suzhou 215000, China 5RIKEN Quantum Computing Center, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 6Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
Abstract:On-chip optical nonreciprocal devices are vital components for integrated photonic systems and scalable quantum information processing. Nonlinear optical isolators and circulators have attracted considerable attention because of their fundamental interest and their important advantages in integrated photonic circuits. However, optical nonreciprocal devices based on Kerr or Kerr-like nonlinearity are subject to dynamical reciprocity when the forward and backward signals coexist simultaneously in a nonlinear system. Here, we theoretically propose a method for realizing on-chip nonlinear isolators and circulators with dynamic nonreciprocity. Dynamic nonreciprocity is achieved via the chiral modulation on the resonance frequency due to coexisting self- and cross-Kerr nonlinearities in an optical ring resonator. This work showing dynamic nonreciprocity with a Kerr nonlinear resonator can be an essential step toward integrated optical isolation.
Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science345 903
[14]
Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, and Lodahl P 2015 Nat. Nanotechnol.10 775
[15]
Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J, and Rauschenbeutel A 2015 Phys. Rev. X5 041036
[16]
Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science354 1577
Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, and Nori F 2016 Nat. Phys.12 731
[23]
Triolo C, Cacciola A, Patan$\rm {\grave{e}}$ S, Saija R, Savasta S, and Nori F 2017 ACS Photon.4 2242
Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovi$\rm {\acute{c}}$ M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R, and Renner H 2013 Nat. Photon.7 579
[49]
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, and Qi M 2012 Science335 447
Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, and Koos C 2017 Nature546 274