Approach the Gell-Mann–Okubo Formula with Machine Learning
Zhenyu Zhang1,2 , Rui Ma1,2 , Jifeng Hu1,2* , and Qian Wang1,2*
1 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China2 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China
Abstract :Machine learning is a novel and powerful technology and has been widely used in various science topics. We demonstrate a machine-learning-based approach built by a set of general metrics and rules inspired by physics. Taking advantages of physical constraints, such as dimension identity, symmetry and generalization, we succeed to approach the Gell-Mann–Okubo formula using a technique of symbolic regression. This approach can effectively find explicit solutions among user-defined observables, and can be extensively applied to studying exotic hadron spectrum.
收稿日期: 2022-08-28
出版日期: 2022-10-14
:
12.40.Yx
(Hadron mass models and calculations)
12.39.-x
(Phenomenological quark models)
11.30.-j
(Symmetry and conservation laws)
[1] Gell-Mann M 1961 The Eightfold Way: A Theory of Strong Interaction Symmetry (OSTI.GOV Technical Report by U.S. Department of Energy Office of Scientific and Technical Information)
[2] Okubo S 1962 Prog. Theor. Phys. 27 949
[3] Gell-Mann M 1962 Phys. Rev. 125 1067
[4] Chen H X, Chen W, Liu X, and Zhu S L 2016 Phys. Rep. 639 1
[5] Liu Y R, Chen H X, Chen W, Liu X, and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[6] Chen H X, Chen W, Liu X, Liu Y R, and Zhu S L 2017 Rep. Prog. Phys. 80 076201
[7] Dong Y, Faessler A, and Lyubovitskij V E 2017 Prog. Part. Nucl. Phys. 94 282
[8] Lebed R F, Mitchell R E, and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[9] Guo F K, Hanhart C, Meißner U G, Wang Q, Zhao Q, and Zou B S 2018 Rev. Mod. Phys. 90 015004
[10] Albuquerque R M, Dias J M, Khemchandani K P, Martínez T A, Navarra F S, Nielsen M, and Zanetti C M 2019 J. Phys. G 46 093002
[11] Yamaguchi Y, Hosaka A, Takeuchi S, and Takizawa M 2020 J. Phys. G 47 053001
[12] Guo F K, Liu X H, and Sakai S 2020 Prog. Part. Nucl. Phys. 112 103757
[13] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A, and Yuan C Z 2020 Phys. Rep. 873 1
[14] Wetzel S J, Melko R G, Scott J, Panju M, and Ganesh V 2020 Phys. Rev. Res. 2 033499
[15] Hezaveh Y, Levasseur L, and Marshall P 2017 Nature 548 555
[16] Schmidt M and Lipson H 2009 Science 324 81
[17] Liu Z and Tegmark M 2021 Phys. Rev. Lett. 126 180604
[18] Pang L G, Zhou K, Su N, Petersen H, Stöcker H, and Wang X N 2018 Nat. Commun. 9 210
[19] Lu P Y, Kim S, and Soljačić M 2020 Phys. Rev. X 10 031056
[20] Udrescu S M and Tegmark M 2020 Sci. Adv. 6 eaay2631
[21] Chen S H 2002 Evolutionary Computation in Economics and Finance (Berlin: Springer-Verlag)
[22] Koza J R 1992 Genetic Programming: On the Programming of Computers by Means of Natural Selection (Cambridge: MIT Press)
[23] Iten R, Metger T, Wilming H, del R L, and Renner R 2020 Phys. Rev. Lett. 124 010508
[24] Heisenberg W 1932 Z. Phys. 77 1
[25] Gell-Mann M 1956 Nuovo Cimento 4 848
[26] Workman R L et al. (Particle Data Group) 2022 Prog. Theor. Exp. Phys. 2022 083C01
[27] de Swart J J 1963 Rev. Mod. Phys. 35 916
[1]
. [J]. 中国物理快报, 2012, 29(10): 101101-101101.
[2]
FU Zi-Wen**
. Lattice QCD Study of the σ Meson [J]. 中国物理快报, 2011, 28(8): 81202-081202.
[3]
ZHANG Dan;ZHAO Qiao-Yan;ZHANG Qiu-Yang. S -Wave DK Interactions in the Chiral SU (3) Quark Model [J]. 中国物理快报, 2009, 26(9): 91201-091201.
[4]
WEN Shui-Guo;LIU Jue-Ping. Ds (0± ) Meson Spectroscopy in Gaussian Sum Rules [J]. 中国物理快报, 2009, 26(2): 21201-021201.
[5]
WANG Bin;LIU Yu-Xin. Radial Excitations in the Global Colour Soliton Model [J]. 中国物理快报, 2007, 24(8): 2208-2211.
[6]
LI De-Min;YU Hong;SHEN Qi-Xing;. Effects of Flavour-Dependent qq Annihilation on the Mixing Angle of the Isoscalar Octet--Singlet and Schwinger’s Nonet Mass Formula
[J]. 中国物理快报, 2001, 18(2): 184-186.