Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty
Bing-Kun Lu1,2 , Zhen Sun1,2 , Tao Yang1 , Yi-Ge Lin1* , Qiang Wang1 , Ye Li1 , Fei Meng1 , Bai-Ke Lin1 , Tian-Chu Li1 , and Zhan-Jun Fang1*
1 Division of Time and Frequency Metrology, National Institute of Metrology, Beijing 100029, China2 Department of Precision Instrument, Tsinghua University, Beijing 100084, China
Abstract :NIM-Sr2 optical lattice clock has been developed on the Changping campus of National Institute of Metrology (NIM). Considering the limitations in NIM-Sr1, several improved parts have been designed including a differential pumping stage in the vacuum system, a permanent magnet Zeeman slower, water-cooled anti-Helmholtz coils, an extended viewport for Zeeman slower, etc. A clock laser with a short-time stability better than $3\times10^{-16}$ is realized based on a self-designed 30-cm-long ultra-low expansion cavity. The systematic frequency shift has been evaluated to an uncertainty of $7.2\times 10^{-18}$, with the uncertainty of BBR shift and the collisional frequency shift being an order of magnitude lower than the last evaluation of NIM-Sr1.
收稿日期: 2022-04-22
出版日期: 2022-07-20
:
06.30.Ft
(Time and frequency)
42.62.Fi
(Laser spectroscopy)
32.70.Jz
(Line shapes, widths, and shifts)
37.10.Jk
(Atoms in optical lattices)
42.62.Eh
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
引用本文:
. [J]. 中国物理快报, 2022, 39(8): 80601-.
Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty. Chin. Phys. Lett., 2022, 39(8): 80601-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/39/8/080601
或
https://cpl.iphy.ac.cn/CN/Y2022/V39/I8/80601
[1] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[2] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[3] Chou C, Hume D, Koelemeij J, Wineland D and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[4] Deschênes J D, Sinclair L C, Giorgetta F R, Swann W C, Baumann E, Bergeron H, Cermak M, Coddington I and Newbury N R 2016 Phys. Rev. X 6 021016
[5] McGrew W F, Zhang X, Fasano R J et al. 2018 Nature 564 87
[6] Kolkowitz S, Pikovski I, Langellier N, Lukin M D, Walsworth R L and Ye J 2016 Phys. Rev. D 94 124043
[7] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[8] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia 55 188
[9] Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 090601
[10] Li Y, Lin Y, Wang Q, Yang T, Sun Z, Zang E and Fang Z 2018 Chin. Opt. Lett. 16 051402
[11] Lin Y G, Wang Q, Meng F et al. 2021 Metrologia 58 035010
[12] Lin Y G, Wang Q, Li Y et al. 2013 Chin. Phys. Lett. 30 014206
[13] Shaokai W, Yuanyang Z, Baike L, Minming W and Zhanjun F 2008 Conference on Precision Electromagnetic Measurements Digest , 8–13 June 2008, Broomfield, CO, p 316
[14] Wang Q, Lin Y G, Gao F L, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2015 Chin. Phys. Lett. 32 100701
[15] Koller S B, Grotti J, Vogt S, Al-Masoudi A, Dörscher S, Häfner S, Sterr U and Lisdat C 2017 Phys. Rev. Lett. 118 073601
[16] Falke S, Lemke N, Grebing C et al. 2014 New J. Phys. 16 073023
[17] Bothwell T, Kedar D, Oelker E, Robinson J M, Bromley S L, Tew W L, Ye J and Kennedy C J 2019 Metrologia 56 065004
[18] Blatt S, Thomsen J W, Campbell G K, Ludlow A D, Swallows M D, Martin M J, Boyd M M and Ye J 2009 Phys. Rev. A 80 052703
[19] Abdel-Hafiz M, Ablewski P, Al-Masoudi A et al. 2019 arXiv:1906.11495 [physics]
[20] BIPM 2008 JCGM 100:2008(E), Evaluation of measurement data—Guide to the expression of uncertainty in measurement, produced by Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1)
[21] Li Y, Lin Y G, Wang Q et al. 2014 Chin. Phys. Lett. 31 024207
[22] Numata K, Kemery A and Camp J 2004 Phys. Rev. Lett. 93 250602
[23] Peik E, Schneider T and Tamm C 2006 J. Phys. B 39 145
[24] Notcutt M, Ma L S, Ludlow A D, Foreman S M, Ye J and Hall J L 2006 Phys. Rev. A 73 031804
[25] Swallows M D, Bishof M, Lin Y, Blatt S, Martin M J, Rey A M and Ye J 2011 Science 331 1043
[26] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202
[27] Hobson R, Bowden W, Vianello A, Silva A, Baynham C F A, Margolis H S, Baird P E G, Gill P and Hill I R 2020 Metrologia 57 065026
[28] Hisai Y, Akamatsu D, Kobayashi T, Hosaka K, Inaba H, Hong F L and Yasuda M 2021 Metrologia 58 015008
[29] Lodewyck J, Zawada M, Lorini L, Gurov M, and Lemonde P 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 411
[30] Alves B X R, Foucault Y, Vallet G and Lodewyck J, 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC) , 14–18 April 2019, Orlando, FL, USA, p 1
[31] Yasuda M and Katori H 2004 Phys. Rev. Lett. 92 153004
[32] Hill I R and London I C 2012 Development of an Apparatus for a Strontium Optical Lattice Optical Frequency Standard , PhD Dissertation (London: Imperial College London)
[33] Nicholson T L et al. 2015 Nat. Commun. 6 6896
[34] Beloy K, Hinkley N, Phillips N B, Sherman J A, Schioppo M, Lehman J, Feldman A, Hanssen L M, Oates C W and Ludlow A D 2014 Phys. Rev. Lett. 113 260801
[1]
. [J]. 中国物理快报, 2022, 39(4): 44201-.
[2]
. [J]. 中国物理快报, 2020, 37(9): 94201-.
[3]
. [J]. 中国物理快报, 2019, 36(12): 120601-.
[4]
. [J]. 中国物理快报, 2019, 36(7): 70601-.
[5]
. [J]. 中国物理快报, 2018, 35(8): 80601-.
[6]
. [J]. 中国物理快报, 2017, 34(10): 109901-.
[7]
. [J]. 中国物理快报, 2017, 34(9): 90601-.
[8]
. [J]. 中国物理快报, 2017, 34(9): 90602-.
[9]
. [J]. 中国物理快报, 2017, 34(5): 50601-.
[10]
. [J]. 中国物理快报, 2017, 34(2): 20601-020601.
[11]
. [J]. 中国物理快报, 2016, 33(11): 114202-114202.
[12]
. [J]. 中国物理快报, 2016, 33(07): 70601-070601.
[13]
. [J]. 中国物理快报, 2016, 33(07): 70602-070602.
[14]
. [J]. 中国物理快报, 2016, 33(04): 40601-040601.
[15]
. [J]. 中国物理快报, 2015, 32(09): 90601-090601.