Zhu-Fang Cui1,2, Fei Gao3, Daniele Binosi4*, Lei Chang5*, Craig D. Roberts1,2*, and Sebastian M. Schmidt6,7
1School of Physics, Nanjing University, Nanjing 210093, China 2Institute for Nonperturbative Physics, Nanjing University, Nanjing 210093, China 3Centre for High Energy Physics, Peking University, Beijing 100871, China 4European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Villa Tambosi, Strada delle Tabarelle 286, I-38123 Villazzano (TN), Italy 5School of Physics, Nankai University, Tianjin 300071, China 6Helmholtz-Zentrum Dresden-Rossendorf, Dresden D-01314, Germany 7RWTH Aachen University, III. Physikalisches Institut B, Aachen D-52074, Germany
Abstract:Beginning with precise data on the ratio of structure functions in deep inelastic scattering (DIS) from $^3$He and $^3$H, collected on the domain $0.19 \leq x_{\scriptscriptstyle{\rm B}} \leq 0.83$, where $x_{\scriptscriptstyle{\rm B}}$ is the Bjorken scaling variable, we employ a robust method for extrapolating such data to arrive at a model-independent result for the $x_{\scriptscriptstyle{\rm B}}=1$ value of the ratio of neutron and proton structure functions. Combining this with information obtained in analyses of DIS from nuclei, corrected for target-structure dependence, we arrive at a prediction for the proton valence-quark ratio: $\left. d_v/u_v \right|_{x_{\scriptscriptstyle{\rm B}}\to 1} = 0.230 (57)$. Requiring consistency with this result presents a challenge to many descriptions of proton structure.
(General properties of QCD (dynamics, confinement, etc.))
引用本文:
. [J]. 中国物理快报, 2022, 39(4): 41401-041401.
Zhu-Fang Cui, Fei Gao, Daniele Binosi, Lei Chang, Craig D. Roberts, and Sebastian M. Schmidt. Valence Quark Ratio in the Proton. Chin. Phys. Lett., 2022, 39(4): 41401-041401.
Bodek A, Breidenbach M, Dubin D L, Elias J E, Friedman J I, Kendall H W, Poucher J S, Riordan E M, Sogard M R, and Coward D H 1973 Phys. Rev. Lett.30 1087
Press W H, Teukolsky S A, Vetterling W T, and Flannery B P 2007 Numerical Recipes 3rd edn The Art of Scientific Computing (New York: Cambridge University Press)