Ideal Spin Hydrodynamics from the Wigner Function Approach
Hao-Hao Peng1,2 , Jun-Jie Zhang3 , Xin-Li Sheng4* , and Qun Wang1,2
1 Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China2 Peng Huanwu Center for Fundamental Theory, Hefei 230026, China3 Northwest Institute of Nuclear Technology, Xi'an 710024, China4 Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
Abstract :Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, and the dipole moment tensor. Compared with ideal hydrodynamics without spin, additional terms at the first and second orders in the Knudsen number ${Kn}$ and the average spin polarization $\chi_{s}$ have been derived. The Wigner function can be expressed in terms of matrix-valued distributions, whose equilibrium forms are characterized by thermodynamical parameters in quantum statistics. The equations of motion for these parameters are derived by conservation laws at the leading and next-to-leading order ${Kn}$ and $\chi_{s}$.
收稿日期: 2021-07-01
出版日期: 2021-10-28
[1] Liang Z T and Wang X N 2005 Phys. Rev. Lett. 94 102301
[2] Voloshin S A 2004 arXiv:nucl-th/0410089
[3] Einstein A and de Hass W J 1915 Dtsch. Phys. Ges. Verh. 17 152
[4] Barnett S J 1935 Rev. Mod. Phys. 7 129
[5] Adamczyk L et al. (STAR collaboration) 2017 Nature 548 62
[6] Adam J et al. (STAR collaboration) 2018 Phys. Rev. C 98 014910
[7] Becattini F, Piccinini F, and Rizzo J 2008 Phys. Rev. C 77 024906
[8] Becattini F, Csernai L, and Wang D J 2013 Phys. Rev. C 88 034905
[9] Becattini F, Chandra V, Del Z L, and Grossi E 2013 Ann. Phys. 338 32
[10] Karpenko I and Becattini F 2017 Eur. Phys. J. C 77 213
[11] Xie Y, Wang D, and Csernai L P 2017 Phys. Rev. C 95 031901
[12] Li H, Pang L G, Wang Q, and Xia X L 2017 Phys. Rev. C 96 054908
[13] Sun Y and Ko C M 2017 Phys. Rev. C 96 024906
[14] Wei D X, Deng W T, and Huang X G 2019 Phys. Rev. C 99 014905
[15] Becattini F and Karpenko I 2018 Phys. Rev. Lett. 120 012302
[16] Adam J et al. (STAR collaboration) 2019 Phys. Rev. Lett. 123 132301
[17] Wu H Z, Pang L G, Huang X G, and Wang Q 2019 Phys. Rev. Res. 1 033058
[18] Florkowski W, Kumar A, Ryblewski R, and Mazeliauskas A 2019 Phys. Rev. C 100 054907
[19] Liu S Y F, Sun Y, and Ko C M 2019 arXiv:1910.06774 [nucl-th]
[20] Liu S Y F and Yin Y 2021 arXiv:2103.09200 [hep-ph]
[21] Fu B, Liu S Y F, Pang L, Song H, and Yin Y 2021 arXiv:2103.10403 [hep-ph]
[22] Becattini F, Buzzegoli M, and Palermo A 2021 arXiv:2103.10917 [nucl-th]
[23] Becattini F, Buzzegoli M, Palermo A, Inghirami G, and Karpenko I 2021 arXiv:2103.14621 [nucl-th]
[24] Yi C, Pu S, and Yang D L 2021 arXiv:2106.00238 [hep-ph]
[25] Kharzeev D 2006 Phys. Lett. B 633 260
[26] Kharzeev D E, McLerran L D, and Warringa H J 2008 Nucl. Phys. A 803 227
[27] Fukushima K, Kharzeev D E, and Warringa H J 2008 Phys. Rev. D 78 074033
[28] Voloshin S A 2010 Phys. Rev. Lett. 105 172301
[29] Wang F Q and Zhao J 2018 Nucl. Sci. Tech. 29 179
[30] Adam J et al. (STAR collaboration) 2021 Nucl. Sci. Tech. 32 48
[31] Abdallah M et al. (STAR collaboration) 2021 arXiv:2109.00131 [nucl-ex]
[32] Liu Y C and Huang X G 2020 Nucl. Sci. Tech. 31 56
[33] Gao J H, Ma G L, Pu S, and Wang Q 2020 Nucl. Sci. Tech. 31 90
[34] Gao J H, Liang Z T, Wang Q, and Wang X N 2020 Global polarization effect and spin-orbit coupling in strong interaction
[35] Gao J H, Liang Z T, and Wang Q 2021 Int. J. Mod. Phys. A 36 2130001
[36] Romatschke P 2010 Int. J. Mod. Phys. E 19 1
[37] Heinz U and Snellings R 2013 Annu. Rev. Nucl. Part. Sci. 63 123
[38] Gale C, Jeon S, and Schenke B 2013 Int. J. Mod. Phys. A 28 1340011
[39] Romatschke P and Romatschke U 2019 Relativistic Fluid Dynamics in and out of Equilibrium (Cambridge: Cambridge University Press)
[40] Shen C and Yan L 2020 Nucl. Sci. Tech. 31 122
[41] Wu S, Shen C, and Song H 2021 arXiv:2104.13250 [nucl-th]
[42] Weyssenhoff J and Raabe A 1947 Acta Phys. Polon. 9 7
[43] Becattini F and Tinti L 2010 Ann. Phys. 325 1566
[44] Montenegro D, Tinti L, and Torrieri G 2017 Phys. Rev. D 96 056012
[45] Montenegro D, Tinti L, and Torrieri G 2017 Phys. Rev. D 96 076016
[46] Florkowski W, Friman B, Jaiswal A, and Speranza E 2018 Phys. Rev. C 97 041901
[47] Florkowski W, Friman B, Jaiswal A, Ryblewski R, and Speranza E 2018 Phys. Rev. D 97 116017
[48] Florkowski W, Kumar A, and Ryblewski R 2019 Prog. Part. Nucl. Phys. 108 103709
[49] Florkowski W 2019 Acta Phys. Pol. B 50 1047
[50] Gallegos A D, Gürsoy U, and Yarom A 2021 arXiv:2101.04759 [hep-th]
[51] Bhadury S, Florkowski W, Jaiswal A, Kumar A, and Ryblewski R 2021 Phys. Rev. D 103 014030
[52] Bhadury S, Florkowski W, Jaiswal A, Kumar A, and Ryblewski R 2021 Phys. Lett. B 814 136096
[53] Hattori K, Hongo M, Huang X G, Matsuo M, and Taya H 2019 Phys. Lett. B 795 100
[54] Fukushima K and Pu S 2021 Phys. Lett. B 817 136346
[55] Li S, Stephanov M A, and Yee H U 2020 Phys. Rev. Lett. 127 082302
[56] She D, Huang A, Hou D, and Liao J 2021 arXiv:2105.04060 [nucl-th]
[57] Heinz U W 1983 Phys. Rev. Lett. 51 351
[58] Elze H T, Gyulassy M, and Vasak D 1986 Nucl. Phys. B 276 706
[59] Vasak D, Gyulassy M, and Elze H T 1987 Ann. Phys. 173 462
[60] Sheng X L 2019 arXiv:1912.01169 [nucl-th]
[61] Sheng X L, Wang Q, and Huang X G 2020 Phys. Rev. D 102 025019
[62] Yang D L, Hattori K, and Hidaka Y 2020 arXiv:2002.02612 [hep-ph]
[63] Weickgenannt N, Speranza E, Sheng X L, Wang Q, and Rischke D H 2020 arXiv:2005.01506 [hep-ph]
[64] Sheng X L, Weickgenannt N, Speranza E, Rischke D H, and Wang Q 2021 arXiv:2103.10636 [nucl-th]
[65] Wang Z and Zhuang P 2021 arXiv:2105.00915 [hep-ph]
[66] Gao J H and Liang Z T 2019 Phys. Rev. D 100 056021
[67] Weickgenannt N, Sheng X L, Speranza E, Wang Q, and Rischke D H 2019 Phys. Rev. D 100 056018
[68] Hattori K, Hidaka Y, and Yang D L 2019 Phys. Rev. D 100 096011
[69] Wang Z, Guo X, Shi S, and Zhuang P 2019 Phys. Rev. D 100 014015
[70] Jackson J D 1998 Classical Electrodynamics (New York: Wiley)
[71] Li S and Yee H U 2018 Phys. Rev. D 98 056018
[72] Li S and Yee H U 2019 Phys. Rev. D 100 056022
[73] Becattini F and Tinti L 2013 Phys. Rev. D 87 025029
[74] Fukushima K and Pu S 2020 arXiv:2001.00359 [hep-ph]
[75] Speranza E and Weickgenannt N 2021 Eur. Phys. J. A 57 155
[76] Fukuda M, Ichikawa K, Senami M, and Tachibana A 2016 AIP Adv. 6 025108
[77] Niemi H and Denicol G S 2014 arXiv:1404.7327 [nucl-th]
[78] Speranza E, Bemfica F S, Disconzi M M, and Noronha J 2021 arXiv:2104.02110 [hep-th]