The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy
Jiao-Jiao Song1, Yang Luo1, Chen Zhang1, Qi-Yi Wu1, Tomasz Durakiewicz2, Yasmine Sassa3,4, Oscar Tjernberg5, Martin Månsson5, Magnus H. Berntsen5, Yin-Zou Zhao1, Hao Liu1, Shuang-Xing Zhu1, Zi-Teng Liu1, Fan-Ying Wu1, Shu-Yu Liu1, Eric D. Bauer6, Ján Rusz3, Peter M. Oppeneer3, Ya-Hua Yuan1, Yu-Xia Duan1, and Jian-Qiao Meng1*
1School of Physics and Electronics, Central South University, Changsha 410083, China 2Institute of Physics, Maria Curie Sklodowska University, 20-031 Lublin, Poland 3Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden 4Department of Physics, Chalmers University of Technology, 41296 Göteborg, Sweden 5Department of Applied Physics, KTH Royal Institute of Technology, AlbaNova Universitetscentrum, 106 91 Stockholm, Sweden 6Condensed Matter and Magnet Science Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Abstract:We systemically investigate the nature of Ce 4$f$ electrons in structurally layered heavy-fermion compounds Ce$_m$$M$$_n$In$_{3m+2n}$ (with $M$ = Co, Rh, Ir, and Pt, $m=1$, 2, $n=0$–2), at low temperature using on-resonance angle-resolved photoemission spectroscopy. Three heavy quasiparticle bands $f^0$, $f^1_{7/2}$ and $f^1_{5/2}$, are observed in all compounds, whereas their intensities and energy locations vary greatly with materials. The strong $f^0$ states imply that the localized electron behavior dominates the Ce 4$f$ states. The Ce 4$f$ electrons are partially hybridized with the conduction electrons, making them have the dual nature of localization and itinerancy. Our quantitative comparison reveals that the $f^1_{5/2}$–$f^0$ intensity ratio is more suitable to reflect the $4f$-state hybridization strength.
. [J]. 中国物理快报, 2021, 38(10): 107402-.
Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy. Chin. Phys. Lett., 2021, 38(10): 107402-.
Pagliuso P G, Movshovich R, Bianchi A D, Nicklas M, Moreno N O, Thompson J D, Hundley M F, Sarrao J L, and Fisk Z 2002 Physica B312–313 129
[9]
Bauer E D, Thompson J D, Sarrao J L, Morales L A, Wastin F, Rebizant J, Griveau J C, Javorsky P, Boulet P, Colineau E, Lander G H, and Stewart G R 2004 Phys. Rev. Lett.93 147005
Koitzsch A, Borisenko S, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Buechner B, Bauer E D, Sarrao J L, and Follath R 2007 Physica C460–462 666
[12]
Götze K, Klotz J, Gnida D, Harima H, Aoki D, Demuer A, Elgazzar S, Wosnitza J, Kaczorowski D, and Sheikin I 2015 Phys. Rev. B92 115141
[13]
Duan Y X, Zhang C, Rusz J, Oppeneer P M, Durakiewicz T, Sassa Y, Tjernberg O, Månsson M, Berntsen M H, Wu F Y, Zhao Y, Song J J, Wu Q Y, Luo Y, Bauer E D, Thompson J D, and Meng J Q 2019 Phys. Rev. B100 085141
[14]
Patil S, Generalov A, Güttler M, Kushwaha P, Chikina A, Kummer K, Rödel T C, Santander-Syro A F, Caroca-Canales N, Geibel C, Danzenbächer S, Kucherenko Y, Laubschat C, Allen J W, and Vyalikh D V 2016 Nat. Commun.7 11029
[15]
Yao Q, Kaczorowski D, Swatek P, Gnida D, Wen C H P, Niu X H, Peng R, Xu H C, Dudin P, Kirchner S, Chen Q Y, Shen D W, and Feng D L 2019 Phys. Rev. B99 081107(R)
[16]
Yuan Y H, Duan Y X, Rusz J, Zhang C, Song J J, Wu Q Y, Sassa Y, Tjernberg O, Månsson M, Berntsen M H, Wu F Y, Liu S Y, Liu H, Zhu S X, Liu Z T, Zhao Y Z, Tobash P H, Bauer E D, Thompson J D, Oppeneer P M, Durakiewicz T, and Meng J Q 2021 Phys. Rev. B103 125122
[17]
Zhang Y, Feng W, Lou X, Yu T L, Zhu X G, Tan S Y, Yuan B K, Liu Y, Lu H Y, Xie D H, Liu Q, Zhang W, Luo X B, Huang Y B, Luo L Z, Zhang Z J, Lai X C, and Chen Q Y 2018 Phys. Rev. B97 045128
[18]
Liu H J, Xu Y J, Zhong Y G, Guan J Y, Kong L Y, Ma J Z, Huang Y B, Chen Q Y, Chen G F, Shi M, Yang Y F, and Ding H 2019 Chin. Phys. Lett.36 097101
[19]
Chen Q Y, Xu D F, Niu X H, Jiang J, Peng R, Xu H C, Wen C H P, Ding Z F, Huang K, Shu L, Zhang Y J, Lee H, Strocov V N, Shi M, Bisti F, Schmitt T, Huang Y B, Dudin P, Lai X C, Kirchner S, Yuan H Q, and Feng D L 2017 Phys. Rev. B96 045107
[20]
Chen Q Y, Wen C H P, Yao Q, Huang K, Ding Z F, Shu L, Niu X H, Zhang Y, Lai X C, Huang Y B, Zhang G B, Kirchner S, and Feng D L 2018 Phys. Rev. B97 075149
[21]
Chen Q Y, Xu D F, Niu X H, Peng R, Xu H C, Wen C H P, Liu X, Shu L, Tan S Y, Lai X C, Zhang Y J, Lee H, Strocov V N, Bisti F, Dudin P, Zhu J X, Yuan H Q, Kirchner S, and Feng D L 2018 Phys. Rev. Lett.120 066403
[22]
Koitzsch A, Borisenko S V, Inosov D, Geck J, Zabolotnyy V B, Shiozawa H, Knupfer M, Fink J, Buechner B, Bauer E D, Sarrao J L, and Follath R 2008 Phys. Rev. B77 155128
[23]
Luo Y, Zhang C, Wu Q Y, Wu F Y, Song J J, Xia W, Guo Y F, Rusz J, Oppeneer P M, Durakiewicz T, Zhao Y Z, Liu H, Zhu S X, Yuan Y H, Tang X F, He J, Tan S Y, Huang Y B, Sun Z, Liu Y, Liu H Y, Duan Y X, and Meng J Q 2020 Phys. Rev. B101 115129
Thompson J D, Movshovich R, Fisk Z, Bouquet F, Curro N J, Fisher R A, Hammel P C, Hegger H, Hundley M F, Jaime M, Pagliuso P G, Petrovic C, Phillips N E, and Sarrao J L 2001 J. Magn. Magn. Mater.226–230 5
[31]
Macaluso R T, Sarrao J L, Moreno N O, Pagliuso P G, Thompson J D, Fronczek F R, Hundley M F, Malinowski A, and Chan J Y 2003 Chem. Mater.15 1394
[32]
Nicklas M, Sidorov V A, Borges H A, Pagliuso P G, Petrovic C, Fisk Z, Sarrao J L, and Thompson J D 2003 Phys. Rev. B67 020506
Morris G D, Heffner R H, Moreno N O, Pagliuso P G, Sarrao J L, Dunsiger S R, Nieuwenhuys G J, Maclaughlin D E, and Bernal O O 2004 Phys. Rev. B69 214415
[42]
Malinowski A, Hundley M F, Moreno N O, Pagliuso P G, Sarrao J L, and Thompson J D 2003 Phys. Rev. B68 184419
[43]
Souma S, Raj S, Campuzano J C, Sato T, Takahashi T, Ohara S, and Sakamoto S 2008 Physica B403 752
[44]
Jiang R, Mou D X, Liu C, Zhao X, Yao Y X, Ryu H, Petrovic C, Ho K M, and Kaminski A 2015 Phys. Rev. B91 165101
Shishido H, Settai R, Aoki D, Ikeda S, Nakawaki H, Nakamura N, Iizuka T, Inada Y, Sugiyama K, Takeuchi T, Kindo K, Kobayashi T C, Haga Y, Harima H, Aoki Y, Namiki T, Sato H, and Ōnuki Y 2002 J. Phys. Soc. Jpn.71 162
Allan M P, Chuang T, Massee F, Xie Y, Ni N, Bud K S L, Boebinger G S, Wang Q, Dessau D S, Canfield P C, Golden M S, and Davis J C 2013 Nat. Phys.9 468
[49]
Zhou B B, Misra S, Da S N E H, Aynajian P, Baumbach R E, Thompson J D, Bauer E D, and Yazdani A 2013 Nat. Phys.9 474
[50]
Koitzsch A, Opahle I, Elgazzar S, Borisenko S V, Geck J, Zabolotnyy V B, Inosov D, Shiozawa H, Richter M, Knupfer M, Fink J, Büchner B, Bauer E D, Sarrao J L, and Follath R 2009 Phys. Rev. B79 075104
Harrison N, Alver U, Goodrich R G, Vekhter I, Sarrao J L, Pagliuso P G, Moreno N O, Balicas L, Fisk Z, Hall D, Macaluso R T, and Chan J Y 2004 Phys. Rev. Lett.93 186405
[53]
Fujimori S, Fujimori A, Shimada K, Narimura T, Kobayashi K, Namatame H, Taniguchi M, Harima H, Shishido H, Ikeda S, Aoki D, Tokiwa Y, Haga Y, and Ōnuki Y 2006 Phys. Rev. B73 224517
[54]
Rusz J, Oppeneer P M, Curro N J, Urbano R R, Young B, Lebegue S, Pagliuso P G, Pham L D, Bauer E D, Sarrao J L, and Fisk Z 2008 Phys. Rev. B77 245124
[55]
Moore D P, Durakiewicz T, Joyce J J, Arko A J, Morales L A, Sarrao J L, Pagliuso P G, Wills J M, and Olson C G 2002 Physica B312–313 134
[56]
Altarawneh M M, Harrison N, Mcdonald R D, Balakirev F F, Mielke C H, Tobash P H, Zhu J X, Thompson J D, Ronning F, and Bauer E D 2011 Phys. Rev. B83 081103(R)
[57]
Shen B, Yu L, Liu K, Lyu S, Jia X, Bauer E D, Thompson J D, Zhang Y, Wang C, Hu C, Ding Y, Sun X, Hu Y, Liu J, Gao Q, Zhao L, Liu G, Xu Z, Chen C, Lu Z, and Zhou X J 2017 Chin. Phys. B26 077401
[58]
Li P, Wu Z Z, Wu F, Guo C Y, Liu Y, Liu H J, Sun Z, Shi M, Rodolakis F, Mcchesney J L, Cao C, Yuan H Q, Steglich F, and Liu Y 2019 Phys. Rev. B100 155110