Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport
Mengmeng Xi1 , Rongqian Wang2 , Jincheng Lu2,3* , and Jian-Hua Jiang2*
1 Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China2 School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China3 Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Abstract :We show that the Coulomb interaction between two circuits separated by an insulating layer leads to unconventional thermoelectric effects, such as the cooling by thermal current effect, the transverse thermoelectric effect and Maxwell's demon effect. The first refers to cooling in one circuit induced by the thermal current in the other circuit. The middle represents electric power generation in one circuit by the temperature gradient in the other circuit. The physical picture of Coulomb drag between the two circuits is first demonstrated for the case with one quantum dot in each circuit and it is then elaborated for the case with two quantum dots in each circuit. In the latter case, the heat exchange between the two circuits can vanish. Finally, we also show that the Maxwell's demon effect can be realized in the four-terminal quantum dot thermoelectric system, in which the quantum system absorbs the heat from the high-temperature heat bath and releases the same heat to the low-temperature heat bath without any energy exchange with the two heat baths. Our study reveals the role of Coulomb interaction in non-local four-terminal thermoelectric transport.
收稿日期: 2021-04-10
出版日期: 2021-08-02
:
05.70.Ln
(Nonequilibrium and irreversible thermodynamics)
84.60.-h
(Direct energy conversion and storage)
88.05.De
(Thermodynamic constraints on energy production)
88.05.Bc
(Energy efficiency; definitions and standards)
[1] Chen G 2005 Nanoscale Energy Transport and Conversion (Oxford: Oxford University Press)
[2] Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131
[3] Jiang J H and Imry Y 2016 C. R. Phys. 17 1047
[4] Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1
[5] Sivan U and Imry Y 1986 Phys. Rev. B 33 551
[6] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[7] Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin: Springer)
[8] Venkatasubramanian R, Silvola E, Colpitts T, and O'Quinn B 2001 Nature 413 597
[9] Jiang J H, Weng M Q, and Wu M W 2006 J. Appl. Phys. 100 063709
[10] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[11] Zhou J, Yang R, Chen G, and Dresselhaus M S 2011 Phys. Rev. Lett. 107 226601
[12] Lu J, Wang R, Liu Y, and Jiang J H 2017 J. Appl. Phys. 122 044301
[13] Lin Z, Yang Y Y, Li W, Wang J, and He J 2020 Phys. Rev. E 101 022117
[14] Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428
[15] Sánchez D and López R 2013 Phys. Rev. Lett. 110 026804
[16] Simine L and Segal D 2012 Phys. Chem. Chem. Phys. 14 13820
[17] Jiang J H, Entin-Wohlman O, and Imry Y 2012 Phys. Rev. B 85 075412
[18] Jordan A N, Sothmann B, Sánchez R, and Büttiker M 2013 Phys. Rev. B 87 075312
[19] Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001
[20] Li L and Jiang J H 2016 Sci. Rep. 6 31974
[21] Agarwalla B K, Jiang J H, and Segal D 2017 Phys. Rev. B 96 104304
[22] Wang R, Lu J, Wang C, and Jiang J H 2018 Sci. Rep. 8 2607
[23] Jiang J H and Imry Y 2017 Phys. Rev. Appl. 7 064001
[24] Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422
[25] Erdman P A, Bhandari B, Fazio R, Pekola J P, and Taddei F 2018 Phys. Rev. B 98 045433
[26] Bhandari B, Chiriacò G, Erdman P A, Fazio R, and Taddei F 2018 Phys. Rev. B 98 035415
[27] Lu J, Wang R, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129
[28] Prete D, Erdman P A, Demontis V, Zannier V, Ercolani D, Sorba L, Beltram F, Rossella F, Taddei F, and Roddaro S 2019 Nano Lett. 19 3033
[29] Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, and Smith C G 2019 Phys. Rev. Lett. 123 117701
[30] Sothmann B, Sánchez R, Jordan A N, and Büttiker M 2012 Phys. Rev. B 85 205301
[31] Jiang J H 2014 J. Appl. Phys. 116 194303
[32] Mari A and Eisert J 2012 Phys. Rev. Lett. 108 120602
[33] Cleuren B, Rutten B, and van den Broeck C 2012 Phys. Rev. Lett. 108 120603
[34] Lu J, Wang R, Wang C, and Jiang J H 2020 Phys. Rev. B 102 125405
[35] Li B, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301
[36] Li B, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501
[37] Jiang J H, Kulkarni M, Segal D, and Imry Y 2015 Phys. Rev. B 92 045309
[38] Joulain K, Drevillon J, Ezzahri Y, and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[39] Sánchez R, Thierschmann H, and Molenkamp L W 2017 Phys. Rev. B 95 241401
[40] Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314
[41] Ren J, Zhu J X, Gubernatis J E, Wang C, and Li B 2012 Phys. Rev. B 85 155443
[42] Jiang J H, Entin-Wohlman O, and Imry Y 2013 Phys. Rev. B 87 205420
[43] Agarwalla B K, Jiang J H, and Segal D 2015 Phys. Rev. B 92 245418
[44] Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003
[45] Sánchez R, López R, Sánchez D, and Büttiker M 2010 Phys. Rev. Lett. 104 076801
[46] Hartmann F, Pfeffer P, Höfling S, Kamp M, and Worschech L 2015 Phys. Rev. Lett. 114 146805
[47] Zhang Y, Lin G, and Chen J 2015 Phys. Rev. E 91 052118
[48] Thierschmann H, Sánchez R, Sothmann B, Buhmann H, and Molenkamp L W 2016 C. R. Phys. 17 1109
[49] Yang J, Elouard C, Splettstoesser J, Sothmann B, Sánchez R, and Jordan A N 2019 Phys. Rev. B 100 045418
[50] Sánchez R, Samuelsson P, and Potts P P 2019 Phys. Rev. Res. 1 033066
[51] He W X, Cao Z, Li G Y, Li L, Lü H F, Li Z, and Luo H G 2020 Phys. Rev. B 101 035417
[52] Tabatabaei S M, Sanchez D, Yeyati A L, and Sanchez R 2020 Phys. Rev. Lett. 125 247701
[53] Sánchez R, Sothmann B, Jordan A N, and Bttiker M 2013 New J. Phys. 15 125001
[54] Whitney R S, Sánchez R, Haupt F, and Splettstoesser J 2016 Physica E 75 257
[55] Jiang J H 2014 Phys. Rev. E 90 042126
[56] Jiang J H, Agarwalla B K, and Segal D 2015 Phys. Rev. Lett. 115 040601
[57] Proesmans K, Cleuren B, and van den Broeck C 2016 Phys. Rev. Lett. 116 220601
[58] Lu J, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429
[59] Kedem O and Caplan S R 1965 Trans. Faraday Soc. 61 1897
[60] Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123
[61] Lu J, Liu Y, Wang R, Wang C, and Jiang J H 2019 Phys. Rev. B 100 115438
[62] Maxwell J C 1871 Theory of Heat (London: Longman)
[63] Koski J V, Maisi V F, Sagawa T, and Pekola J P 2014 Phys. Rev. Lett. 113 030601
[64] Koski J V, Kutvonen A, Khaymovich I M, Ala-Nissila T, and Pekola J P 2015 Phys. Rev. Lett. 115 260602
[65] Koski J V, Maisi V F, Pekola J P, and Averin D V 2014 Proc. Natl. Acad. Sci. USA 111 13786
[66] Chida K, Desai S, Nishiguchi K, and Fujiwara A 2017 Nat. Commun. 8 15310
[67] Sánchez R, Splettstoesser J, and Whitney R S 2019 Phys. Rev. Lett. 123 216801
[68] Annby-Andersson B, Samuelsson P, Maisi V F, and Potts P P 2020 Phys. Rev. B 101 165404
[1]
. [J]. 中国物理快报, 2023, 40(5): 50501-.
[2]
. [J]. 中国物理快报, 2021, 38(1): 10501-.
[3]
. [J]. 中国物理快报, 2019, 36(8): 80501-.
[4]
. [J]. 中国物理快报, 2017, 34(9): 98701-.
[5]
. [J]. 中国物理快报, 2017, 34(2): 20502-020502.
[6]
. [J]. 中国物理快报, 2016, 33(08): 80501-080501.
[7]
. [J]. 中国物理快报, 2015, 32(10): 100501-100501.
[8]
. [J]. 中国物理快报, 2015, 32(5): 50503-050503.
[9]
. [J]. 中国物理快报, 2014, 31(10): 100502-100502.
[10]
. [J]. 中国物理快报, 2013, 30(10): 100501-100501.
[11]
. [J]. 中国物理快报, 2013, 30(7): 70501-070501.
[12]
. [J]. Chin. Phys. Lett., 2013, 30(1): 10501-010501.
[13]
. [J]. Chin. Phys. Lett., 2012, 29(12): 127201-127201.
[14]
. [J]. Chin. Phys. Lett., 2012, 29(11): 118901-118901.
[15]
WU An-Cai
. Percolation of Mobile Individuals on Weighted Scale-Free Networks [J]. 中国物理快报, 2011, 28(11): 118902-118902.