Magnetic Anisotropy Induced by Orbital Occupation States in La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ Films
Huaixiang Wang1,2, Jinghua Song1,2, Weipeng Wang1, Yuansha Chen1, Xi Shen1*, Yuan Yao1, Junjie Li1, Jirong Sun1,2, and Richeng Yu1,2*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Interface engineering is an effective and feasible method to regulate the magnetic anisotropy of films by altering interfacial states between films. Using the technique of pulsed laser deposition, we prepared La$_{0.67}$Sr$_{0.33}$MnO$_{3}$ (LSMO) and La$_{0.67}$Sr$_{0.33}$MnO$_{3}$/SrCoO$_{2.5}$ (LSMO/SCO) films on (110)-oriented La$_{0.3}$Sr$_{0.7}$Al$_{0.65}$Ta$_{0.35}$O$_{3}$ substrates. By covering the SCO film above the LSMO film, we transformed the easy magnetization axis of LSMO from the [001] axis to the [1$\bar{1}$0] axis in the film plane. Based on statistical analyses, we find that the corresponding Mn–Mn ionic distances are different in the two types of LSMO films, causing different distortions of Mn–O octahedron in LSMO. In addition, it also induces diverse electronic occupation states in Mn$^{3+}$ ions. The $e_{\rm g}$ electron of Mn$^{3+}$ occupies 3$z^{2}-r^{2}$ and $x^{2}-y^{2}$ orbitals in the LSMO and LSMO/SCO, respectively. We conclude that the electronic spin reorientation leads to the transformation of the easy magnetization axis in the LSMO films.
Yi D, Liu J, Hsu S L, Zhang L, Choi Y, Kim J W, Chen Z, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H, Birgeneau R J, and Ramesh R 2016 Proc. Natl. Acad. Sci. USA113 6397
[2]
Zhang J, Zhong Z, Guan X, Shen X, Zhang J, Han F, Zhang H, Zhang H, Yan X, Zhang Q, Gu L, Hu F, Yu R, Shen B, and Sun J 2018 Nat. Commun.9 1923
[3]
Song J, Chen Y, Zhang H, Han F, Zhang J, Chen X, Huang H, Zhang J, Zhang H, Yan X, Khan T, Qi S, Yang Z, Hu F, Shen B, and Sun J 2019 Phys. Rev. Mater.3 045801
[4]
Guan X, Shen X, Zhang J, Wang W, Zhang J, Wang H, Wang W, Yao Y, Li J, Gu C, Sun J, and Yu R 2019 Phys. Rev. B100 014427
Moya X, Hueso L E, Maccherozzi F, Tovstolytkin A I, Podyalovskii D I, Ducati C, Phillips L C, Ghidini M, Hovorka O, Berger A, Vickers M E, Defay E, Dhesi S S, and Mathur N D 2013 Nat. Mater.12 52
[13]
Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, and Tokura Y 2003 Nature426 55
Boris A V, Matiks Y, Benckiser E, Frano A, Popovich P, Hinkov V, Wochner P, Castro-Colin M, Detemple E, Malik V K, Bernhard C, Prokscha T, Suter A, Salman Z, Morenzoni E, Cristiani G, Habermeier H U, and Keimer B 2011 Science332 937
Fert A, Barthélémy A, Youssef J B, Contour J P, Cros V, De Teresa J M, Hamzic A, George J M, Faini G, Grollier J, Jaffrès H, Le G H, Montaigne F, Pailloux F, and Petroff F 2001 Mater. Sci. Eng. B84 1
[22]
Garcia V, Bibes M, Bocher L, Valencia S, Kronast F, Crassous A, Moya X, Enouz-Vedrenne S, Gloter A, Imhoff D, Deranlot C, Mathur N D, Fusil S, Bouzehouane K, and Barthelemy A 2010 Science327 1106
Okada Y, Walkup D, Lin H, Dhital C, Chang T R, Khadka S, Zhou W, Jeng H T, Paranjape M, Bansil A, Wang Z, Wilson S D, and Madhavan V 2013 Nat. Mater.12 707
Song J, Chen Y, Chen X, Wang H, Khan T, Han F, Zhang J, Huang H, Zhang J, Zhang H, Zhang H, Yan X, Qi S, Hu F, Shen B, Yu R, and Sun J 2019 Phys. Rev. Appl.12 054016
Zhang J, Chen X, Zhang Q, Han F, Zhang J, Zhang H, Zhang H, Huang H, Qi S, Yan X, Gu L, Chen Y, Hu F, Yan S, Liu B, Shen B, and Sun J 2018 ACS Appl. Mater. & Interfaces10 40951
[38]
Wang W, Zhang J, Shen X, Guan X, Yao Y, Li J, Gu C, Sun J, Zhu Y, Tao J, and Yu R 2020 Phys. Rev. B101 024406