Revisiting Laser-Intensity-Dependent Ionization and Fragmentation of C$_{60}$
D. P. Dong1,2 , B. H. Yang1,2 , D. B. Qian1,2* , W. C. Zhou1,2 , S. F. Zhang1,2 , and X. Ma1,2*
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract :We revisit the laser-intensity-dependent ionization and fragmentation yields of C$_{60}$ molecules irradiated by 25-fs, 798-nm laser pulses based on the approach in which photoions are measured via a velocity map imaging spectrometer working in a time-sliced mode. This approach dramatically improves the signal-to-background ratio compared to those using a simple (traditional) time-of-flight mode (spectrometer), and thus allows us to measure the laser-intensity dependences down to a previously untouched region, which is expected to provide new insights into the intense-field ionization and fragmentation of C$_{60}$. Indeed, we find that the saturation intensities for C$_{60}$ ionizations and the onset intensity for C$_{60}$ fragmentation are much lower than those reported in previous experiments. Furthermore, the derived saturation-intensity dependence on charge distribution demonstrates the validity of the over-the-barrier ionization using a conducting sphere model.
收稿日期: 2021-04-01
出版日期: 2021-08-02
[1] Dewitt M J and Levis R J 1998 Phys. Rev. Lett. 81 5101
[2] Hankin S M, Villeneuve D M, Corkum P B, and Rayner D M 2000 Phys. Rev. Lett. 84 5082
[3] Lépine F 2015 J. Phys. B 48 122002
[4] Hunsche S, Starczewski T, L'Huillier A, Persson A, Wahlström C G, van Linden van den Heuvell B, and Svanberg S 1996 Phys. Rev. Lett. 77 1966
[5] Campbell E E B and Levine R D 2000 Annu. Rev. Phys. Chem. 51 65
[6] Schulz C P, Hertel I V, and Laarmann T 2005 Adv. At. Mol. Opt. Phys. 50 219
[7] Tchaplyguine M, Hoffmann K, Dühr O, Hohmann H, Korn G, Rottke H, Wittmann M, Hertel I V, and Campbell E E B 2000 J. Chem. Phys. 112 2781
[8] Hertel I V, Shchatsinin I, Laarmann T, Zhavoronkov N, Ritze H H, and Schulz C P 2009 Phys. Rev. Lett. 102 023003
[9] Campbell E E B, Hansen K, Hoffman K, Tchaplyguine M, Wittmann M, and Hertel I V 2001 J. Chem. Phys. 114 1716
[10] Bhardwaj V R, Corkum P B, and Rayner D M 2004 Phys. Rev. Lett. 93 043001
[11] Shchatsinin I, Laarmann T, Stibenz G, Steinmeyer G, Stalmashonak A, Zhavoronkov N, Schulz C P, and Hertel I V 2006 J. Chem. Phys. 125 194320
[12] Qian D B, Zhang X J, Zhang D C, Zhang S F, Yang J, Cheng R, Zhu X L, and Ma X 2018 Chem. Phys. Lett. 691 110
[13] Qian D B, Shi F D, Chen L, Martin S, Bernard J, Yang J, Zhang S F, Chen Z Q, Zhu X L, and Ma X 2018 J. Chem. Phys. 148 134303
[14] Zhou W C, Zhao D M, Qian D B, Li Y F, Y, Shi F D, Zhu Y H, Zhang S F, Zhu X L, Wu Y, and Ma X 2019 Int. J. Mass Spectrom. 440 27
[15] Eppink A T J B and Parker D H 1997 Rev. Sci. Instrum. 68 3477
[16] Spence D E, Kean P N, and Sibbett W 1991 Opt. Lett. 16 42
[17] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[18] Li Y F, Zhao D M, Zhou W C, Qian D B, yang J, Zhang S F, Zhu X L, and Ma X 2019 Int. J. Mass Spectrom. 442 23
[19] Hankin S M, Villeneuve D M, Corkum P B, and Rayner D M 2001 Phys. Rev. A 64 13405
[20] Bhardwaj V R, Corkum P B, and Rayner D M 2003 Phys. Rev. Lett. 91 203004
[21] Jaroń-Becker A, Becker A, and Faisal F H M 2006 Phys. Rev. Lett. 96 143006
[22] Lezius M, Blanchet V, Rayner D M, Villeneuve D M, Stolow A, and Ivanov M Y 2001 Phys. Rev. Lett. 86 51
[23] Hansen K, Hoffmann K, and Campbell E E B 2003 J. Chem. Phys. 119 2513
[24] Hansch P and Van Woerkom L D 1996 Opt. Lett. 21 1286
[25] Walker M A, Hansch P, and Van Woerkom L D 1998 Phys. Rev. A 57 R701
[26] Bauer D, Ceccherini F, Macchi A, and Cornolti F 2001 Phys. Rev. A 64 063203
[1]
. [J]. 中国物理快报, 2022, 39(3): 33401-.
[2]
. [J]. 中国物理快报, 2018, 35(10): 103301-.
[3]
. [J]. 中国物理快报, 2017, 34(10): 103301-.
[4]
. [J]. 中国物理快报, 2016, 33(01): 13102-013102.
[5]
. [J]. 中国物理快报, 2015, 32(06): 63303-063303.
[6]
. [J]. 中国物理快报, 2013, 30(10): 103103-103103.
[7]
. [J]. Chin. Phys. Lett., 2013, 30(2): 23301-023301.
[8]
. [J]. Chin. Phys. Lett., 2013, 30(2): 23302-023302.
[9]
Muhammad Haneef, Saleh Mohammad, Jehan Akbar, Suneela Arif, Muhammad Zahir, Humayun Khan. Detached Electron Spectra from H− near a Partially Reflecting Spherical Surface [J]. 中国物理快报, 2012, 29(7): 73201-073201.
[10]
Muhammad Haneef*,Saleh Mohammad,Suneela Arif,Jehan Akbar,Nasrullah Shah,Imran Ullah. Photodetachment of Di-atomic Negative Ion H2 − near a Surface [J]. 中国物理快报, 2012, 29(5): 53201-053201.
[11]
XIA Yong,YIN Ya-Ling,JI Xiang,YIN Jian-Ping**. A Multistage Optical Stark Decelerator for use with a Pulsed Molecular Beam with an Electrostatic Storage Ring [J]. 中国物理快报, 2012, 29(5): 53701-053701.
[12]
A. Rahman,Iftikhar Ahmad**,A. Afaq,H. J. Zhao. Photodetachment of a Homo-Nuclear Linear Tetra-Atomic Negative Molecular Ion [J]. 中国物理快报, 2012, 29(4): 43301-043301.
[13]
YU Jie;ZHANG Wei YANG Jing;CONG Shu-Lin**
. Field-Free Molecular Orientation with a Few Half-Cycle Pulses in the Terahertz Region [J]. 中国物理快报, 2011, 28(10): 103301-103301.
[14]
A. Rahman;Iftikhar Ahmad;**;A. Afaq;M. Haneef;H. J. Zhao
. Investigation of Linear Tetra-Atomic Negative Ion by Photodetached-Electron Spectra [J]. 中国物理快报, 2011, 28(8): 83301-083301.
[15]
A. Rahman;Iftikhar Ahmad*;A. Afaq;M. Haneef
. Interferences in Photodetached Electron Spectra from a Linear Tetra-Atomic Negative Ion [J]. 中国物理快报, 2011, 28(6): 63301-063301.