Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces
Hai-Zhong Wu1† , Quan Guo2† , Yan-Yun Tu1 , Zhi-Hui Lyu1 , Xiao-Wei Wang1 , Yong-Qiang Li1 , Zhao-Yan Zhou1 , Dong-Wen Zhang1* , Zeng-Xiu Zhao1 , and Jian-Min Yuan1,3*
1 College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China2 Northwest Institute of Nuclear Technology, Xi'an 710024, China3 Graduate School of China Academic of Engineering Physics, Beijing 100193, China
Abstract :Above-band-gap optical excitation of electron-hole pairs screens the doping-induced surface electric field and generates terahertz (THz) pulses via free-carrier transport. THz emission from a heavily doped silicon surface is much weaker than that of lightly doped samples. A polarity reversal of the THz electric field is observed in heavily doped p-type silicon, indicating that the doping related and carrier induced surface electric fields oppose each other. By comparing the penetration depth of the excitation laser with the thickness of the depletion layer for the doped silicon, it is shown that competition between diffusion and drift current causes the polarity reversal.
收稿日期: 2021-04-01
出版日期: 2021-07-03
引用本文:
. [J]. 中国物理快报, 2021, 38(7): 74201-.
Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces. Chin. Phys. Lett., 2021, 38(7): 74201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/7/074201
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I7/74201
[1] Sze S M and Ng K K 2007 Physics of Semiconductor Devices 3rd edn (New Jersey: John Wiley & Sons) p 790
[2] Fahey P, Griffin P B, and Plummer J D 1989 Rev. Mod. Phys. 61 289
[3] Wang W, Lüpke G, Ventra M D, Pantelides S, Gilligan J, Tolk N, Kizilyalli I, Roy P, Margaritondo G, and Lucovsky G 1998 Phys. Rev. Lett. 81 4224
[4] Bloch J, Mihaychuk J G, and van Driel H M 1996 Phys. Rev. Lett. 77 920
[5] Meyer C, Lüpke G, Emmerichs U, Wolter F, Kurz H, Bjorkman C H, and Lucovsky G 1995 Phys. Rev. Lett. 74 3001
[6] Eich S 2017 Sci. Adv. 3 e1602094
[7] Lim D, Downer M C, Ekerdt J G, Arzate N, Mendoza B S, Gavrilenko V I, and Wu R Q 2000 Phys. Rev. Lett. 84 3406
[8] Mihaychuk J G, Shamir N, and van Driel H M 1999 Phys. Rev. B 59 2164
[9] Zhang Y, Guo Q, Zheng S, Zhong X, Zhong G, Zhang D, Ren C, Tan C, Lu Z, Zhang Y, Tang Y, Wang J, and Yuan J 2018 J. Mater. Chem. C 6 11679
[10] Zhang Y, Zhang Y, Guo Q, Zhong X, Chu Y, Lu H, Zhong G, Jiang J, Tan C, Liao M, Lu Z, Zhang D, Wang J, Yuan J, and Zhou Y 2018 npj Comput. Mater. 4 39
[11] Scheidt T, Rohwer E G, von Neethling B H M, and Stafast H 2008 J. Appl. Phys. 104 083712
[12] Fiore J L, Fomenko V V, Bodlaki D, and Borguet E 2011 Appl. Phys. Lett. 98 041905
[13] Guo Q, Zhang Y, Lyu Z, Zhang D, Huang Y, Meng C, Zhao Z, and Yuan J 2019 Opt. Mater. Express 9 2376
[14] Zhang X C, Hu B B, Darrow T J, and Auston D H 1990 Appl. Phys. Lett. 56 1011
[15] Zhang X C and Auston D H 1992 J. Appl. Phys. 71 326
[16] Tonouchi M 2020 J. Appl. Phys. 127 245703
[17] Ulbricht R, Hendry E, Shan J, Heinz T F, and Bonn M 2011 Rev. Mod. Phys. 83 543 [Erratum: 2017 Rev. Mod. Phys. 89 029901]
[18] Yamahara K, Mannan A, Kawayama I, Nakanishi H, and Tonouchi M 2020 Sci. Rep. 10 14633
[19] Ferguson B and Zhang X C 2002 Nat. Mater. 1 26
[20] Mochizuki T, Ito A, Mitchell J, Nakanishi H, Tanahashi K, Kawayama I, Tonouchi M, Shirasawa K, and Takato H 2017 Appl. Phys. Lett. 110 163502
[21] Huang Y, Zhu L, Zhao Q, Guo Y, Ren Z, Bai J, and Xu X 2017 ACS Appl. Mater. & Interfaces 9 4956
[22] Mochizuki T, Ito A, Nakanishi H, Tanahashi K, Kawayama I, Tonouchi M, Shirasawa K, and Takato H 2019 J. Appl. Phys. 125 151615
[23] Jacobs K, Murakami H, Murakami F, Serita K, Beyne E, and Tonouchi M 2021 Nat. Electron. 4 202
[24] Hotta Y, Kawayama I, Miyake S, Saiki I, Nishi S, Yamahara K, Arafune K, Yoshida H, Satoh S, Sawamoto N, Ogura A, Ito A, Nakanishi H, Tonouchi M, and Tabata H 2018 Appl. Phys. Lett. 113 012103
[25] Jiang H, Gong C, Nishimura T, Murakami H, Kawayama I, Nakanishi H, and Tonouchi M 2020 Photonics 7 73
[26] Guo Q, Zhang Y, Lyu Z, Z, Huang Y, Meng C, Zhao Z, and Yuan J 2019 IEEE Trans. Terahertz Sci. Technol. 9 422
[27] Dekorsy T, Pfeifer T, Kütt W, and Kurz H 1993 Phys. Rev. B 47 3842
[28] Johnston M B, Whittaker D M, Corchia A, Davies A G, and Linfield E H 2002 Phys. Rev. B 65 165301
[29] Heyman J, Coates N, Reinhards A, and Strasser G 2003 Appl. Phys. Lett. 83 5476
[30] Liu K, Xu J, Yuan T, and Zhang X C 2006 Phys. Rev. B 73 155330
[31] Reid M and Fedosejevs R 2005 Appl. Phys. Lett. 86 011906
[32] Park H, Choi B, Steigerwald A, Varga K, and Tolk N 2013 J. Appl. Phys. 113 023711
[33] Blumröder U, Steglich M, Schrempel F, Hoyer P, and Nolte S 2015 Phys. Status Solidi B 252 105
[34] Blumröder U, Hempel H, Füchsel K, Hoyer P, Bingel A, Eichberger R, Unold T, and Nolte S 2017 Phys. Status Solidi A 214 1600590
[35] Amit C and Roy J N 2011 Serb. J. Electr. Eng. 8 147
[36] Cuevas A and D M D 2004 Sol. Energy 76 255
[37] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) p 32
[38] Hamaguchi C 2001 Basic Semiconductor Physics (Osaka: Springer) p 212