1Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Information and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 5Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract:Interfacial structures and interactions of two-dimensional (2D) materials on solid substrates are of fundamental importance for fabrications and applications of 2D materials. However, selection of a suitable solid substrate to grow a 2D material, determination and control of 2D material-substrate interface remain a big challenge due to the large diversity of possible configurations. Here, we propose a computational framework to select an appropriate substrate for epitaxial growth of 2D material and to predict possible 2D material-substrate interface structures and orientations using density functional theory calculations performed for all non-equivalent atomic structures satisfying the symmetry constraints. The approach is validated by the correct prediction of three experimentally reported 2D material-substrate interface systems with only the given information of two parent materials. Several possible interface configurations are also proposed based on this approach. We therefore construct a database that contains these interface systems and has been continuously expanding. This database serves as preliminary guidance for epitaxial growth and stabilization of new materials in experiments.
Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z J, Felser C, Aroyo M I, and Bernevig B A 2017 Nature547 298
[15]
Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, and Wang Z J 2019 Nature566 480
[16]
Curtarolo S, Setyawan W, Hart G L W, Jahnatek M, Chepulskii R V, Taylor R H, Wanga S D, Xue J K, Yang K S, Levy O, Mehl M J, Stokes H T, Demchenko D O, and Morgan D 2012 Comput. Mater. Sci.58 218
[17]
Calderon C E, Plata J J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M J, Hart G, Nardelli M B, and Curtarolo S 2015 Comput. Mater. Sci.108 233
Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, and Marzari N 2018 Nat. Nanotechnol.13 246
Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, and Thygesen K S 2018 2D Mater.5 042002
[28]
Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, and Kim J 2019 Nat. Mater.18 550
Amorim B, Cortijo A, de Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M, and Vozmediano M A H 2016 Phys. Rep.617 1
Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, and Greber T 2008 Phys. Rev. Lett.101 126102
[44]
Iannuzzi M, Kalichava I, Ma H, Leake S J, Zhou H, Li G, Zhang Y, Bunk O, Gao H, Hutter J, Willmott P R, and Greber T 2013 Phys. Rev. B88 125433
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, and Gao H J 2017 Adv. Mater.29 1605407
He R, Zhao L, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A, and Pinczuk A 2012 Nano Lett.12 2408
[52]
Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, and Liu K 2017 Sci. Bull.62 1074
Silva C C, Iannuzzi M, Duncan D A, Ryan P T P, Clarke K T, Kuchle J T, Cai J Q, Jolie W, Schlueter C, Lee T L, and Busse C 2018 J. Phys. Chem. C122 18554