Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory
Shuai Qin1, Cong-Zhang Gao2, Wandong Yu3*, and Yi-Zhi Qu1*
1School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China 2Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
Abstract:The multi-electron capture and loss cross-sections of Ar$^{+}$–Ne collisions are calculated at absolute energies in the few-keV/a.u. regime. The calculations are performed using a novel inverse collision framework, in the context of a time-dependent density functional theory, combined with molecular dynamics. The extraction of the capture and loss probabilities is based on the particle-number projection technique, originating from nuclear physics, but validly extended to represent many-electron systems. Good agreement between experimental and theoretical data is found, which clearly reveals the non-negligible post-collision decay of the projectile's electrons, providing further evidence for the applicability of the approach to complex many-electron collision systems.
. [J]. 中国物理快报, 2021, 38(6): 63101-.
Shuai Qin, Cong-Zhang Gao, Wandong Yu, and Yi-Zhi Qu. Multi-Electron Transfer of Ar$^{+}$ Colliding with Ne Atoms Based on a Time-Dependent Density-Functional Theory. Chin. Phys. Lett., 2021, 38(6): 63101-.
Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F D R, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo L U J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, and Stöhlker T 2019 J. Phys. B52 171003
Niemann H B, Atreya S K, Bauer S J, Carignan G R, Demick J E, Frost R L, Gautier D, Haberman J A, Harpold D N, Hunten D M, Israel G, Lunine J I, Kasprzak W T, Owen T C, Paulkovich M, Raulin F, Raaen E, and Way S H 2005 Nature438 779
[5]
Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, TrCumper J, and West R G 1996 Science274 205
Pivovar L I, Novikov M T, and Dolgov A S 1966 Sov. Phys.-JETP23 357
[34]
DuBois R D, Santos A C F, Olson R E, Stöhlker T, Bosch F, Bräuning-Demian A, Gumberidze A, Hagmann S, Kozhuharov C, Mann R, Muthig A O, Spillmann U, Tachenov S, Barth W, Dahl L, Franzke B, Glatz J, Gröning L, Richter S, Wilms D, Krämer A, Ullmann K, and Jagutzki O 2003 Phys. Rev. A68 042701
Reinhard P G and Suraud E 2003 Introduction to Cluster Dynamics (New York: Wiley)
[42]
Andrade X, Alberdi-Rodriguez J, Strubbe D A, Oliveira M J, Nogueira F, Castro A, Muguerza J, Arruabarrena A, Louie S G, Aspuru-Guzik A, Rubio A, and Marques M A 2012 J. Phys.: Condens. Matter24 233202
[43]
Tavernelli I, Gaigeot M P, Vuilleumier R, Stia C, Herve D P M A, and Politis M F 2008 ChemPhysChem9 2099