Relativistic Chiral Description of the $^1\!S_0$ Nucleon–Nucleon Scattering
Xiu-Lei Ren1,2 , Chun-Xuan Wang3 , Kai-Wen Li3,4 , Li-Sheng Geng3,5,6* , and Jie Meng1,3,4*
1 State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China2 Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum, Germany3 School of Physics, Beihang University, Beijing 102206, China4 Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan5 Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China6 School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Abstract :Recently, a relativistic chiral nucleon–nucleon interaction was formulated up to leading order, which provides a good description of the phase shifts of $J\leq1$ partial waves [Chin. Phys. C 42 (2018) 014103 ]. Nevertheless, a separable regulator function that is not manifestly covariant was used in solving the relativistic scattering equation. In the present work, we first explore a covariant and separable form factor to regularize the kernel potential and then apply it to study the simplest but most challenging $^1\!S_0$ channel which features several low-energy scales. In addition to being self-consistent, we show that the resulting relativistic potential can describe quite well the unique features of the $^1\!S_0$ channel at leading order, in particular the pole position of the virtual bound state and the zero amplitude at the scattering momentum $\sim $340 MeV, indicating that the relativistic formulation may be more natural from the viewpoint of effective field theories.
收稿日期: 2021-02-09
出版日期: 2021-05-25
[1] Bedaque P F and van Kolck U 2002 Annu. Rev. Nucl. Part. Sci. 52 339
[2] Epelbaum E, Hammer H W, and Meißner U G 2009 Rev. Mod. Phys. 81 1773
[3] Machleidt R and Entem D R 2011 Phys. Rep. 503 1
[4] Epelbaum E and Meißner U G 2012 Annu. Rev. Nucl. Part. Sci. 62 159
[5] Weinberg S 1979 Physica A 96 327
[6] Weinberg S 1990 Phys. Lett. B 251 288
[7] Weinberg S 1991 Nucl. Phys. B 363 3
[8] Entem D R and Machleidt R 2003 Phys. Rev. C 68 041001
[9] Epelbaum E, Glockle W, and Meißner U G 2005 Nucl. Phys. A 747 362
[10] Epelbaum E, Krebs H, Lee D, and Meißner U G 2011 Phys. Rev. Lett. 106 192501
[11] Tews I, Krüger T, Hebeler K, and Schwenk A 2013 Phys. Rev. Lett. 110 032504
[12] Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2013 Phys. Rev. Lett. 110 112502
[13] Hergert H, Bogner S K, Binder S, Calci A, and Langhammer J 2013 Phys. Rev. C 87 034307
[14] Hergert H, Binder S, Calci A, Langhammer J, and Roth R 2013 Phys. Rev. Lett. 110 242501
[15] Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2014 Phys. Rev. Lett. 112 102501
[16] Jansen G R, Engel J, Hagen G, Navratil P, and Signoracci A 2014 Phys. Rev. Lett. 113 142502
[17] Bogner S K, Hergert H, Holt J D, Schwenk A, and Binder S 2014 Phys. Rev. Lett. 113 142501
[18] Lynn J E, Carlson J, Epelbaum E, Gandolfi S, and Gezerlis A 2014 Phys. Rev. Lett. 113 192501
[19] Hagen G et al. 2016 Nat. Phys. 12 186
[20] Elhatisari S, Lee D, Rupak G, Epelbaum E, and Krebs H 2015 Nature 528 111
[21] Lapoux V, Somà V, Barbieri C, Hergert H, and Holt J D 2016 Phys. Rev. Lett. 117 052501
[22] Elhatisari S, Epelbaum E, Krebs H, Lähde T A, and Lee D 2017 Phys. Rev. Lett. 119 222505
[23] Epelbaum E, Krebs H, and Meißner U G 2015 Phys. Rev. Lett. 115 122301
[24] Reinert P, Krebs H, and Epelbaum E 2018 Eur. Phys. J. A 54 86
[25] Entem D R, Kaiser N, Machleidt R, and Nosyk Y 2015 Phys. Rev. C 91 014002
[26] Entem D R, Machleidt R, and Nosyk Y 2017 Phys. Rev. C 96 024004
[27] Stoks V G J, Klomp R A M, Terheggen C P F, and de Swart J J 1994 Phys. Rev. C 49 2950
[28] Wiringa R B, Stoks V G J, and Schiavilla R 1995 Phys. Rev. C 51 38
[29] Machleidt R 2001 Phys. Rev. C 63 024001
[30] 2016 International Review of Nuclear Physics , in Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) vol 10
[31] Geng L S, Martin C J, Alvarez-Ruso L, and Vicente V M J 2008 Phys. Rev. Lett. 101 222002
[32] Ren X L, Geng L S, Martin C J, Meng J, and Toki H 2012 J. High Energy Phys. 2012 73
[33] Ren X L, Geng L S, and Meng J 2015 Phys. Rev. D 91 051502
[34] Altenbuchinger M, Geng L S, and Weise W 2014 Phys. Rev. D 89 014026
[35] Geng L S 2013 Front. Phys. 8 328
[36] Ren X L, Li K W, Geng L S, Long B W, and Ring P 2018 Chin. Phys. C 42 014103
[37] Li K W, Ren X L, Geng L S, and Long B W 2018 Chin. Phys. C 42 014105
[38] Song J, Li K W, and Geng L S 2018 Phys. Rev. C 97 065201
[39] Li K W, Hyodo T, and Geng L S 2018 Phys. Rev. C 98 065203
[40] Xiao Y, Geng L S, and Ren X L 2019 Phys. Rev. C 99 024004
[41] Bai Q Q, Wang C X, Xiao Y, and Geng L S 2020 Phys. Lett. B 809 135745
[42] Xiao Y, Wang C X, Lu J X, and Geng L S 2020 Phys. Rev. C 102 054001
[43] Song J, Xiao Y, Liu Z W, Wang C X, and Li K W 2020 Phys. Rev. C 102 065208
[44] Liu Z W, Song J, Li K W, and Geng L S 2021 Phys. Rev. C 103 025201
[45] Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965
[46] Shen S, Hu J, Liang H, Meng J, and Ring P 2016 Chin. Phys. Lett. 33 102103
[47] Shen S, Liang H, Meng J, Ring P, and Zhang S 2017 Phys. Rev. C 96 014316
[48] Shen S, Liang H, Long W H, Meng J, and Ring P 2019 Prog. Part. Nucl. Phys. 109 103713
[49] Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232
[50] Kadyshevsky V G 1968 Nucl. Phys. B 6 125
[51] Erkelenz K 1974 Phys. Rep. 13 191
[52] Ueda T and Green A E S 1968 Phys. Rev. 174 1304
[53] Machleidt R, Holinde K, and Elster C 1987 Phys. Rept. 149 1
[54] Jackson A D, Riska D O, and Verwest B 1975 Nucl. Phys. A 249 397
[55] Holinde K and Machleidt R 1976 Nucl. Phys. A 256 479
[56] Woloshyn R M and Jackson A D 1972 Nucl. Phys. A 185 131
[57] Nagels M M, Rijken T A, and de Swart J J 1978 Phys. Rev. D 17 768
[58] Ordonez C, Ray L, and van Kolck U 1994 Phys. Rev. Lett. 72 1982
[59] Epelbaum E, Gloeckle W, and Meißner U G 2000 Nucl. Phys. A 671 295
[60] Nogga A, Timmermans R G E, and van Kolck U 2005 Phys. Rev. C 72 054006
[61] Epelbaum E 2000 PhD Thesis (Julich, Forschungszentrum)
[62] Epelbaum E, Krebs H, and Meißner U G 2015 Eur. Phys. J. A 51 53
[63] van Kolck U 1999 Nucl. Phys. A 645 273
[64] Lutz M 2000 Nucl. Phys. A 677 241
[65] Sánchez S M, Yang C J, Long B, and van Kolck U 2018 Phys. Rev. C 97 024001
[66] Olive K A 2016 Chin. Phys. C 40 100001
[67] Polinder H, Haidenbauer J, and Meißner U G 2006 Nucl. Phys. A 779 244
[68] Djukanovic D, Gegelia J, Scherer S, and Schindler M R 2007 Few-Body Syst. 41 141
[69] Woloshyn R M and Jackson A D 1973 Nucl. Phys. B 64 269
[70] Thompson R H 1970 Phys. Rev. D 1 110
[71] Blankenbecler R and Sugar R 1966 Phys. Rev. 142 1051
[72] Wang C X, Geng L S, and Long B 2021 Chin. Phys. C 45 054101
[73] NN-OnLine, http://nn-online.org
[74] Pavon V M and Ruiz A E 2005 Phys. Rev. C 72 044007
[75] Epelbaum E and Gegelia J 2012 Phys. Lett. B 716 338
[76] Stoks V G J, Klomp R A M, Rentmeester M C M, and de Swart J J 1993 Phys. Rev. C 48 792
[77] Kaplan D B, Savage M J, and Wise M B 1998 Phys. Lett. B 424 390
[78] Birse M C 2006 Phys. Rev. C 74 014003
[79] Timoteo V S, Frederico T, Delfino A, and Tomio L 2005 Phys. Lett. B 621 109
[80] Birse M C 2007 Phys. Rev. C 76 034002
[81] Yang C J, Elster C, and Phillips D R 2008 Phys. Rev. C 77 014002
[82] Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 034002
[83] Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 044002
[84] Valderrama M P 2011 Phys. Rev. C 83 024003
[85] Pavon V M 2011 Phys. Rev. C 84 064002
[86] Long B and Yang C J 2011 Phys. Rev. C 84 057001
[87] Long B and Yang C J 2012 Phys. Rev. C 86 024001
[88] Epelbaum E, Gasparyan A M, Gegelia J, and Krebs H 2015 Eur. Phys. J. A 51 71
[89] Baru V, Epelbaum E, Gegelia J, and Ren X L 2019 Phys. Lett. B 798 134987
[90] Ren X L, Epelbaum E, and Gegelia J 2020 Phys. Rev. C 101 034001
[1]
. [J]. 中国物理快报, 2019, 36(6): 61301-.
[2]
. [J]. 中国物理快报, 2014, 31(1): 11401-011401.
[3]
. [J]. 中国物理快报, 2013, 30(12): 122501-122501.
[4]
. [J]. 中国物理快报, 2013, 30(6): 62101-062101.
[5]
XU Pu;HUANG Hong-Xia;PING Jia-Lun**;WANG Fan
. Nucleon-Nucleon Interaction in Constituent Quark Models [J]. 中国物理快报, 2011, 28(3): 31301-031301.
[6]
DAI Lian-Rong. Nucleon-Nucleon Interaction and the Mixing of Scalar Meson [J]. 中国物理快报, 2010, 27(1): 12102-012102.
[7]
LI Ang;ZUO Wei;Schulze H. J.;Lombardo U.. Hot Nuclear Matter Equation of State and Finite Temperature Kaon Condensation [J]. 中国物理快报, 2008, 25(12): 4233-4236.
[8]
LU Xiao-Hua;ZHANG Ying-Xun;LI Zhu-Xia;ZHAO Zhi-Xiang. Equation of State for Isospin Asymmetric Matter of Nucleons and Deltas [J]. 中国物理快报, 2008, 25(11): 3932-3935.
[9]
PANG Hou-Rong;PING Jia-Lun WANG Fan. N ¯N S -Wave Elastic Cross Section and Possible Bound States in a Constituent Quark Model [J]. 中国物理快报, 2008, 25(9): 3192-3195.
[10]
HUANG Hong-Xia;CHEN Ling-Zhi;PANG Hou-Rong;PING Jia-Lun; WANG Fan. Influence of Spin--Orbit Force on Nucleon--Nucleon Scattering in the Quark Delocalization Colour Screening Model [J]. 中国物理快报, 2008, 25(5): 1617-1620.
[11]
CAO Xu;LEE Xi-Guo;WANG Qing-Wu;. Strangeness Production Process pp→nK+ Σ^ within Resonance Model [J]. 中国物理快报, 2008, 25(3): 888-891.
[12]
Mukhtar Ahmed Rana. Etchability of Latent Fission Fragment Tracks in CR-39 [J]. 中国物理快报, 2007, 24(11): 3107-3110.
[13]
CHEN Ling-Zhi;PANG Hou-Rong;HUANG Hong-Xia;PING Jia-Lun;WANG Fan. Subtraction of Spurious Centre-of-Mass Motion in Quark Delocalization and Colour Screening Model [J]. 中国物理快报, 2007, 24(9): 2529-2532.
[14]
DAI Lian-Rong;ZHANG Dan;LI Chun-Ran;TONG Lei. Structures of NΩ and △Ω Dibaryons [J]. 中国物理快报, 2007, 24(2): 389-392.
[15]
YANG Ji-Feng;HUANG Jian-Hua;LIU Dan. Padé Expansion and the Renormalization of Nucleon--Nucleon Scattering [J]. 中国物理快报, 2006, 23(10): 2688-2690.