Topological-Defect-Induced Superstructures on Graphite Surface
Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu* , and Jin-Ming Cai
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650000, China
Abstract :Topological defects in graphene induce structural and electronic modulations. Knowing exact nature of broken-symmetry states around the individual atomic defects of graphene is very important for understanding the electronic properties of this material. We investigate structural dependence on localized electronic states in the vicinity of topological defects on a highly oriented pyrolytic graphite (HOPG) surface, using scanning tunneling microscopy and spectroscopy. Several inherent topological defects on the HOPG surface and the local density of states surrounding them are explored, visualized as scattering wave-related ($\sqrt{3} \times \sqrt{3}$) R30$^{\circ}$ superstructures and honeycomb superstructures. In addition, the superstructures observed near the grain boundary have a much higher decay length at specific sites than that reported previously, indicating far greater electron scattering on the quasi-periodic grain boundary.
收稿日期: 2020-08-27
出版日期: 2021-01-27
:
72.10.Fk
(Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))
73.20.-r
(Electron states at surfaces and interfaces)
73.22.Pr
(Electronic structure of graphene)
引用本文:
. [J]. 中国物理快报, 2021, 38(2): 27201-.
Zi-Lin Ruan , Zhen-Liang Hao , Hui Zhang , Shi-Jie Sun , Yong Zhang , Wei Xiong , Xing-Yue Wang , Jian-Chen Lu, and Jin-Ming Cai . Topological-Defect-Induced Superstructures on Graphite Surface. Chin. Phys. Lett., 2021, 38(2): 27201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/2/027201
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I2/27201
[1] Ziatdinov M, Fujii S, Kusakabe K et al. 2013 Phys. Rev. B 87 115427
[2] Yang B, Xu H, Lu J et al. 2014 J. Am. Chem. Soc. 136 12041
[3] Xu W Y, Zhang L Z, Huang L et al. 2019 Chin. Phys. B 28 046801
[4] Wu L, Hou T, Li Y et al. 2013 J. Phys. Chem. C 117 17066
[5] Vicarelli L, Heerema S J, Dekker C et al. 2015 ACS Nano 9 3428
[6] Hollen S M, Tjung S J, Mattioli K R et al. 2016 J. Phys.: Condens. Matter 28 034003
[7] Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26
[8] Rehman M U, Hua C and Lu Y 2020 Chin. Phys. B 29 057304
[9] Simonis P, Goffaux C, Thiry P A et al. 2002 Surf. Sci. 511 319
[10] Sakai K I, Takai K, Fukui K I et al. 2010 Phys. Rev. B 81 235417
[11] Luican-Mayer A, Barrios-Vargas J E, Falkenberg J T et al. 2016 2D Mater. 3 031005
[12] Long F, Yasaei P, Sanoj R et al. 2016 ACS Appl. Mater. & Interfaces 8 18360
[13] Li S Y, Ren Y N, Liu Y W et al. 2019 2D Mater. 6 031005
[14] Li J, Lin L, Rui D et al. 2017 ACS Nano 11 4641
[15] Kotakoski J, Krasheninnikov A V, Kaiser U et al. 2011 Phys. Rev. Lett. 106 105505
[16] Sun Z P, Hua C Q, Liu X L et al. 2020 Phys. Rev. B 101 155114
[17] Zhang W, Ju Z and Wu W 2019 Phys. Rev. B 100 115120
[18] Ugeda M M, Brihuega I, Hiebel F et al. 2012 Phys. Rev. B 85 121402
[19] Cervenka J and Flipse C F J 2009 Phys. Rev. B 79 195429
[20] Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
[21] Gargiulo F and Yazyev O V 2014 Nano Lett. 14 250
[22] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[23] Lahiri J, Lin Y, Bozkurt P et al. 2010 Nat. Nanotechnol. 5 326
[24] Meyer J C, Kisielowski C, Erni R et al. 2008 Nano Lett. 8 3582
[25] Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420
[26] Park J, He G, Feenstra R M et al. 2013 Nano Lett. 13 3269
[27] López J C M, Passeggi M C G and Ferrón J 2008 Surf. Sci. 602 671
[28] Niimi Y, Matsui T, Kambara H et al. 2006 Phys. Rev. B 73 085421
[29] Ziatdinov M, Fujii S, Kusakabe K et al. 2014 Phys. Rev. B 89 155405
[30] Rutter G M, Crain J N, Guisinger N P et al. 2007 Science 317 219
[31] Yan H, Liu C C, Bai K K et al. 2013 Appl. Phys. Lett. 103 143120
[32] Liu H, Chen J, Yu H et al. 2015 Nat. Commun. 6 8180
[33] Iqbal M Z, Kelekci O, Iqbal M W et al. 2014 New J. Phys. 16 083020
[34] Jung M, Sohn S D, Park J et al. 2016 Sci. Rep. 6 22570
[35] Mahmood A, Mallet P and Veuillen J Y 2012 Nanotechnology 23 055706
[36] Mallet P, Brihuega I, Bose S et al. 2012 Phys. Rev. B 86 045444
[37] Tesch J, Leicht P, Blumenschein F et al. 2017 Phys. Rev. B 95 075429
[38] Koepke J C, Wood J D, Estrada D et al. 2013 ACS Nano 7 75
[39] Yang H, Mayne A J, Boucherit M et al. 2010 Nano Lett. 10 943
[40] Wahl P, Schneider M A, Diekhoner L et al. 2003 Phys. Rev. Lett. 91 106802
[1]
. [J]. 中国物理快报, 2020, 37(3): 37201-.
[2]
. [J]. 中国物理快报, 2015, 32(4): 44102-044102.
[3]
. [J]. 中国物理快报, 2015, 32(03): 37201-037201.
[4]
WANG Xin-Jun;LIU Jing-Feng;LI Shui. Low-Temperature Thermal Conductance in Superlattice Nanowire with Structural Defect [J]. 中国物理快报, 2008, 25(6): 2107-2110.
[5]
LI Xiu-Ping;LA Shi-Jiang;WEN Yu-Bing;YAN Wei-Xian. Coherent Dynamics of Direct-Current-Driven Quantum-Dot-Array with Two Time-Dependent Embedded Impurities [J]. 中国物理快报, 2008, 25(4): 1396-1399.
[6]
CHEN Xiong-Wen;SHI Zhen-Gang;CHEN Bao-Ju;SONG Ke-Hui. Kondo Resonance versus Fano Interference in Double Quantum Dots Coupled to a Two-Lead One-Ring System [J]. 中国物理快报, 2007, 24(11): 3225-3228.
[7]
CHEN Bao-Ju;CHEN Xiong-Wen;SHI Zhen-Gang;ZHU Xi-Xiang;SONG Ke-Hui;WU Shao-Quan. Fano Interference versus Kondo Effect in Strongly Correlated T-Shaped Quantum Dots Embedded in an Aharonov--Bohm Ring [J]. 中国物理快报, 2007, 24(4): 1046-1049.
[8]
YAN Cong-Hua;WU Shao-Quan;HUANG Rui;SUN Wei-Li. Spin-Flip Process through Double Quantum Dots Coupled to Ferromagnetic Leads [J]. 中国物理快报, 2006, 23(7): 1888-1891.
[9]
ZHU Rui. A Theoretic Approach to SU(4) Kondo Effect in Carbon Nanotube Quantum Dots [J]. 中国物理快报, 2006, 23(6): 1578-1580.
[10]
CHEN Xiong-Wen;SHI Zhen-Gang;WU Shao-Quan;SONG Ke-Hui;. Tunable Kondo Effect of a Three-Terminal Transport Quantum Dot Embedded in an Aharonov--Bohm Ring [J]. 中国物理快报, 2006, 23(2): 439-442.
[11]
LI Shu-Guang;LIU Xiao-Dong;ZHOU Gui-Yao;HOU Lan-Tian. A Kind of Low Loss Birefringent Photonic Crystal Fibre with Increasing-Diameter Air-Holes [J]. 中国物理快报, 2005, 22(11): 2855-2857.
[12]
ZHOU Bo;CHEN Xiong-Wen; LI Tie; NIE Yu-Mei;WU Shao-Quan. Persistent Current in a Mesoscopic Ring Side-Attached with a Quantum Dot [J]. 中国物理快报, 2005, 22(11): 2918-2921.
[13]
CHEN Yu-Guang;CHEN Hong;ZHANG Yu-Mei. Ground State Properties of a Local Sine-Gordon Model with Two Scatters [J]. 中国物理快报, 2005, 22(6): 1496-1499.
[14]
CHEN Xiong-Wen;WU Shao-Quan;WANG Peng;SUN Wei-Li. Giant Persistent Current in a Mesoscopic Ring with Parallel-Coupled Double Quantum Dots [J]. 中国物理快报, 2004, 21(5): 911-914.
[15]
ZHANG Guo-Feng;GAO Ying-Fang;YIN Wen;LIANG Jiu-Qing;YAN Qi-Wei. Spin Dynamics of Supramolecular Dimer [Mn4 ]2 Interacting With a Spin-polarized Electron [J]. 中国物理快报, 2004, 21(4): 598-600.