Prediction of Superhard BN$_{2}$ with High Energy Density
Yiming Zhang1† , Shuyi Lin1† , Min Zou1 , Meixu Liu1 , Meiling Xu1* , Pengfei Shen2 , Jian Hao1* , and Yinwei Li1
1 Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China2 Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
Abstract :Considering that pressure-induced formation of short, strong covalent bonds in light-element compounds can produce superhard materials, we employ structure searching and first-principles calculations to predict a new class of boron nitrides with a stoichiometry of BN$_{2}$, which are stable relative to alpha-B and alpha-N$_{2}$ at ambient pressure. At ambient pressure, the most stable phase has a layered structure (h-BN$_{2}$) containing hexagonal BN layers between which there are intercalated N$_{2}$ molecules. At 25 GPa, a three-dimensional $P4_{2}/mmc$ structure with single N–N bonds becomes the most stable. Dynamical, thermal, and mechanical stability calculations reveal that this structure can be recovered under ambient conditions. Its calculated stress-strain relations demonstrate an intrinsic superhard nature with an estimated Vickers hardness of $\sim$43 GPa. This structure has a potentially high energy density of $\sim$4.19 kJ/g.
收稿日期: 2020-10-07
出版日期: 2021-01-06
引用本文:
. [J]. 中国物理快报, 2021, 38(1): 18101-.
Yiming Zhang, Shuyi Lin, Min Zou, Meixu Liu, Meiling Xu, Pengfei Shen, Jian Hao, and Yinwei Li. Prediction of Superhard BN$_{2}$ with High Energy Density. Chin. Phys. Lett., 2021, 38(1): 18101-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/38/1/018101
或
https://cpl.iphy.ac.cn/CN/Y2021/V38/I1/18101
[1] Kumaran C R, Tiwari B, Chandran M, Bhattacharya S S and Ramachandra R M S 2013 J. Nanopart. Res. 15 1509
[2] Meng D, Yue W, Lin F, Wang C and Wu Z 2015 J. Superhard Mater. 37 67
[3] Dong G Y, Yang X D, Li X B, Song X S and Cheng X L 2008 Diamond Relat. Mater. 17 1
[4] Zhang Y, Sun H and Chen C 2006 Phys. Rev. B 73 144115
[5] Liu H, Fan Q Y, Yang F, Yu X H, Zhang W and Yun S N 2020 Chin. Phys. B 29 106102
[6] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H 2006 Phys. Rev. Lett. 96 155501
[7] Xu X, Chai C, Fan Q and Yang Y 2017 Chin. Phys. B 26 046101
[8] Ma Z, Wang P, Yan F, Shi C and Tian Y 2019 Chin. Phys. B 28 036101
[9] Crowhurst J C 2006 Science 311 1275
[10] Wang S, Yu X, Lin Z, Zhang R, He D, Qin J, Zhu J, Han J, Wang L, Mao H, Zhang J and Zhao Y 2012 Chem. Mater. 24 3023
[11] Lu C, Li Q, Ma Y and Chen C 2017 Phys. Rev. Lett. 119 115503
[12] Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385
[13] Luo X, Zhou X F, Liu Z, He J, Xu B, Yu D, Wang H T and Tian Y 2008 J. Phys. Chem. C 112 9516
[14] Qu N R, Wang H C, Li Q, Li Y D, Li Z P, Gou H Y and Gao F M 2019 Chin. Phys. B 28 096201
[15] Wang S, Oganov A R, Qian G, Zhu Q, Dong H, Dong X and Davari E M M 2016 Phys. Chem. Chem. Phys. 18 1859
[16] Pan Y, Xie C, Xiong M, Ma M, Liu L, Li Z, Zhang S, Gao G, Zhao Z, Tian Y, Xu B and He J 2017 Chem. Phys. Lett. 689 68
[17] Bundy F P and Kasper J S 1967 J. Chem. Phys. 46 3437
[18] Guo W F, Wang L S, Li Z P, Xia M R and Gao F M 2015 Chin. Phys. Lett. 32 096201
[19] Knotek O, Breidenbach R, Jungblut F and Löffler F 1990 Surf. Coat. Technol. 43–44 107
[20] Wang D, Shi R and Gan L H 2017 Chem. Phys. Lett. 669 80
[21] Li X and Peng F 2019 Phys. Chem. Chem. Phys. 21 15609
[22] Gu Q, Krauss G and Steurer W 2008 Adv. Mater. 20 3620
[23] Zinin P V, Ming L C, Ishii H A, Jia R, Acosta T and Hellebrand E 2012 J. Appl. Phys. 111 114905
[24] Solozhenko V L, Kurakevych O O, Andrault D, Le G Y and Mezouar M 2009 Phys. Rev. Lett. 102 015506
[25] Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102
[26] Li Q, Wang M, Oganov A R, Cui T, Ma Y and Zou G 2009 J. Appl. Phys. 105 53514
[27] Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201
[28] Horvath-Bordon E, Riedel R, Zerr A, McMillan P F, Auffermann G, Prots Y, Bronger W, Kniep R and Kroll P 2006 Chem. Soc. Rev. 35 987
[29] Hao J, Liu H, Lei W, Tang X, Lu J, Liu D and Li Y 2015 J. Phys. Chem. C 119 28614
[30] Ma Z Y, Yan F, Wang S X, Jia Q Q, Yu X H and Shi C L 2017 Chin. Phys. B 26 126105
[31] Li Y, Li Q and Ma Y 2011 Europhys. Lett. 95 66006
[32] Gao Y, Ying P, Wu Y, Chen S, Ma M, Wang L, Zhao Z and Yu D 2019 J. Appl. Phys. 125 175108
[33] Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103
[34] Long J, Shu C, Yang L and Yang M 2015 J. Alloys Compd. 644 638
[35] Zhang Z, Lu M, Zhu L, Zhu L, Li Y, Zhang M and Li Q 2014 Phys. Lett. A 378 741
[36] Huang Q, Yu D, Zhao Z, Fu S, Xiong M, Wang Q, Gao Y, Luo K, He J and Tian Y 2012 J. Appl. Phys. 112 53518
[37] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[38] Jiang X, Zhao J and Ahuja R 2013 J. Phys.: Condens. Matter 25 122204
[39] Li S, Shi L, Zhu H, Xia W and Wang Y 2019 Phys. Status Solidi 256 1800699
[40] Tian Y, Kou C, Lu M, Yan Y, Zhang D, Li W, Cui X, Zhang S, Zhang M and Gao L 2020 Phys. Lett. A 384 126518
[41] He C, Sun L, Zhang C, Peng X, Zhang K and Zhong J 2012 Phys. Chem. Chem. Phys. 14 10967
[42] Fan Q, Wei Q, Yan H, Zhang M, Zhang Z, Zhang J and Zhang D 2014 Comput. Mater. Sci. 85 80
[43] Li Z and Gao F 2012 Phys. Chem. Chem. Phys. 14 869
[44] Hubert H, Garvie L A J, Buseck P R, Petuskey W T and Mcmillan P F 1997 J. Solid State Chem. 133 356 10.1006/jssc.1997.7582
[45] Solozhenko V L, Le G Y and Kurakevych O O 2006 C. R. Chim. 9 1472
[46] Li Y, Hao J, Liu H, Lu S and Tse J S 2015 Phys. Rev. Lett. 115 105502
[47] Xie C, Ma M, Liu C, Pan Y, Xiong M, He J, Gao G, Yu D, Xu B, Tian Y and Zhao Z 2017 J. Mater. Chem. C 5 5897
[48] Lin S, Xu M, Hao J, Wang X, Wu M, Shi J, Cui W, Liu D, Lei W and Li Y 2019 J. Mater. Chem. C 7 4527
[49] Solozhenko V L and Kurakevych O O 2008 J. Phys.: Conf. Ser. 121 62001
[50] Zhang H, Yao S and Widom M 2016 Phys. Rev. B 93 144107
[51] Ektarawong A, Simak S I and Alling B 2017 Phys. Rev. B 95 064206
[52] Kurakevych O O and Solozhenko V L 2007 Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 63 i80
[53] Solozhenko V L and Turkevich V Z 2018 J. Phys. Chem. C 122 8505
[54] Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21
[55] Shi X H, Liu B, Yao Z and Liu B B 2020 Chin. Phys. Lett. 37 047101
[56] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[57] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[58] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[59] Cui W and Li Y 2019 Chin. Phys. B 28 107104
[60] Li L, Cui X, Cao H, Jiang Y, Duan H, Jing Q, Liu J and Wang Q 2020 Chin. Phys. B 29 077101
[61] Sun Y, Xu B and Yi L 2020 Chin. Phys. B 29 023102
[62] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[63] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[64] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[65] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[66] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[67] Hill R 1952 Proc. Phys. Soc. A 65 349
[68] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713
[69] Tang X, Hao J and Li Y 2015 Phys. Chem. Chem. Phys. 17 27821
[70] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[71] Paine R T and Narula C K 1990 Chem. Rev. 90 73
[72] Gall D, Shin C S, Spila T, Odén M, Senna M J H, Greene J E and Petrov I 2002 J. Appl. Phys. 91 3589
[73] Wu Z, Zhao E, Xiang H, Hao X, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[74] Guo X, Li L, Liu Z, Yu D, He J, Liu R, Xu B, Tian Y and Wang H T 2008 J. Appl. Phys. 104 23503