Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm
Jin Zhang1,2, Lin-Qiang Hua1,2*, Zhong Chen1,2, Mu-Feng Zhu1,2, Cheng Gong1,2, and Xiao-Jun Liu1,2*
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China 2University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Extreme ultraviolet (XUV) frequency comb is a powerful tool in precision measurement. It also brings many new opportunities to the field of strong field physics since high harmonic generation related phenomena can be studied with high repetition rate. We demonstrate the generation of an XUV frequency comb with the aid of intra-cavity high harmonic generation process. The setup is driven by a high power infrared frequency comb, and an average power of 4.5 kW is reached in the femtosecond enhancement cavity. With Xe gas as the working media, harmonics up to the 19th order are observed. Power measurement indicates that as much as 115.9 μW (1.3 mW) are generated at $\sim$94 nm ($\sim$148 nm). The shortest wavelength we can reach is $\sim$55 nm. The coherence of the generated light is tested with an optical-heterodyne-based measurement of the third harmonic. The resulted line width is $\sim$3 Hz. In addition, with this system, we also observe a strong suppression of below threshold harmonics from O$_2$ compared to that from Xe. These results suggest that the current system is ready for precision spectroscopic measurements with few-electron atomic and molecular systems in XUV region as well as the study of strong field physics with an unprecedented 100 MHz repetition rate.
(Ultrafast processes; optical pulse generation and pulse compression)
引用本文:
. [J]. 中国物理快报, 2020, 37(12): 124203-.
Jin Zhang, Lin-Qiang Hua, Zhong Chen, Mu-Feng Zhu, Cheng Gong, and Xiao-Jun Liu. Extreme Ultraviolet Frequency Comb with More than 100 μW Average Power below 100 nm. Chin. Phys. Lett., 2020, 37(12): 124203-.
Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F and Hänsch T W 2005 Nature436 234
[3]
Ozawa A, Rauschenberger J, Gohle C, Herrmann M, Walker D R, P V, Fernandez A, Graf R, Apolonski A, Holzwarth R, Krausz F, Hänsch T W and Udem T 2008 Phys. Rev. Lett.100 253901
[4]
Yost D C, Schibli T R, Ye J, Tate J L, Hostetter J, Gaarde M B and Schafer K J 2009 Nat. Phys.5 815
Yang Y Y, Süßmann F, Zherebtsov S, Pupeza I, Kaster J, Lehr D, Fuchs H J, Kley E B, Fill E, Duan X M, Zhao Z S, Krausz F, Stebbings S L and Kling M F 2011 Opt. Express19 1954
Pupeza I, Holzberger S, Eidam T, Carstens H, Esser D, Weitenberg J, Russbuldt P, Rauschenberger J, Limpert J, Udem T, Tünnermann A, Hänsch T W, Apolonski A, Krausz F and Fill E 2013 Nat. Photon.7 608
[11]
Pupeza I, Högner M, Weitenberg J, Holzberger S, Esser D, Eidam T, Limpert J, Tünnermann A, Fill E and Yakovlev V S 2014 Phys. Rev. Lett.112 103902
[12]
Benko C, Allison T K, Cingoz A, Hua L, Labaye F, Yost D C and Ye J 2014 Nat. Photon.8 530
Holzberger S, Lilienfein N, Carstens H, Saule T, Högner M, Lücking F, Trubetskov M, P V, Eidam T, Limpert J, Tünnermann A, Fill E, Krausz F and Pupeza I 2015 Phys. Rev. Lett.115 023902
[15]
Porat G, Heyl C M, Schoun S B, Benko C, Dorre N, Corwin K L and Ye J 2018 Nat. Photon.12 387
Bergeson S D, Balakrishnan A, Baldwin K G H, Lucatorto T B, Marangos J P, McIlrath T J, O'Brian T R, Rolston S L, Sansonetti C J, Wen J, Westbrook N, Cheng C H and Eyler E E 1998 Phys. Rev. Lett.80 3475
[22]
Haas M, Jentschura U D, Keitel C H, Kolachevsky N, Herrmann M, Fendel P, Fischer M, Udem T, Holzwarth R, Hänsch T W, Scully M O and Agarwal G S 2006 Phys. Rev. A73 052501
[23]
Herrmann M, Haas M, Jentschura U D, Kottmann F, Leibfried D, Saathoff G, Gohle C, Ozawa A, B V, Knunz S, Kolachevsky N, Schussler H A, Hänsch T W and Udem T 2009 Phys. Rev. A79 052505
Lin Z Y, Jia X Y, Wang C L, Hu Z L, Kang H P, Quan W, Lai X Y, Liu X J, Chen J, Zeng B, Chu W, Yao J P, Cheng Y and Xu Z Z 2012 Phys. Rev. Lett.108 223001