Molecular Opacity Calculations for Lithium Hydride at Low Temperature
Gui-Ying Liang1 , Yi-Geng Peng2 , Rui Li3 , Yong Wu1,4* , and Jian-Guo Wang1
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China2 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China3 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China4 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
Abstract :The opacities of the lithium hydride molecule are calculated for temperatures of 300 K, 1000 K, 1500 K, and 2000 K, at a pressure of 10 atm, in which the contributions from the five low-lying electronic states are considered. The ab initio multi-reference single and double excitation configuration interaction (MRDCI) method is applied to compute the potential energy curves (PECs) of the $^{7}$LiH, including four $^{1}\!\varSigma^{+}$ states and one $^{1}\!\varPi$ state, as well as the corresponding transition dipole moments between these states. The ro-vibrational energy levels are calculated based on the PECs obtained, together with the spectroscopic constants. In addition, the partition functions are also computed, and are provided at temperatures ranging from 10 K to 2000 K for $^{7}$LiH, $^{7}$LiD, $^{6}$LiH, and $^{6}$LiD.
收稿日期: 2020-09-28
出版日期: 2020-12-08
:
31.50.Df
(Potential energy surfaces for excited electronic states)
31.15.ag
(Excitation energies and lifetimes; oscillator strengths)
31.15.aj
(Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)
[1] Federman S R, Bernath P F and Müller H S P 2012 Proc. Int. Astron. Union 7 355
[2] Barklem P S et al. 2011 Astron. & Astrophys. 530 A94
[3] Minniti D et al. 1998 Astrophys. J. 499 L175
[4] Chen Y Q et al. 2001 Astron. & Astrophys. 371 943
[5] Mena E D et al. 2015 Astron. & Astrophys. 576 A69
[6] Dalgarno A 2005 J. Phys.: Conf. Ser. 4 10
[7] Lin X et al. 2017 Astron. & Astrophys. 598 A75
[8] Bougleux E and Galli D 1997 Mon. Not. R. Astron. Soc. 288 638
[9] Lepp S, Stanci P C and Dalgarno A 2002 J. Phys. B 35 R57
[10] Nakamura G 1930 Z. Phys. 59 218
[11] Crawford F H and Jorgensen T 1935 Phys. Rev. 47 932
[12] Crawford F H and Jorgensen T 1935 Phys. Rev. 47 358
[13] Velasco R 1957 Can. J. Phys. 35 1204
[14] Pearson E F and Gordy W 1969 Phys. Rev. 177 59
[15] Plummer G M et al. 1984 J. Chem. Phys. 81 4893
[16] Plummer G M, Herbst E and de Lucia F C 1984 Astrophys. J. 282 L113
[17] G M A, Olson W B and Thompson G 1990 J. Mol. Spectrosc. 144 257
[18] Matsushima F et al. 1994 Jpn. J. Appl. Phys. 33 315
[19] Dulick M, Zhang K Q, Guo B and Bernath P F 1998 J. Mol. Spectrosc. 188 14
[20] Lin W C, Chen J J and Luh W T 1997 J. Phys. Chem. A 101 6709
[21] Huang Y L et al. 2000 J. Chem. Phys. 113 683
[22] Hsu S K et al. 2002 J. Phys. Chem. A 106 6279
[23] Jönsson B et al. 1981 J. Chem. Phys. 74 4566
[24] Roos B O and Sadlej J A 1982 J. Chem. Phys. 76 5444
[25] Partridge H and Langhoff S R 1981 J. Chem. Phys. 74 2361
[26] Partridge H et al. 1981 J. Chem. Phys. 75 2299
[27] Zemke W T, Way K R and Stwalley W C 1978 J. Chem. Phys. 69 402
[28] Zemke W T and Stwalley W C 1980 J. Chem. Phys. 73 5584
[29] Paidarová I et al. 1990 Int. J. Quantum Chem. 38 283
[30] Vidal C R and Stwalley W C 1982 J. Chem. Phys. 77 883
[31] Boutalib A and Gadéa F X 1992 J. Chem. Phys. 97 1144
[32] Lee B K, Stout J M and Dykstra C E 1997 J. Mol. Struct. 400 57
[33] Diniz L G et al. 2016 J. Mol. Spectrosc. 322 22
[34] Holka F et al. 2011 J. Chem. Phys. 134 094306
[35] Coppola C M, Lodi L and Tennyson J 2011 Mon. Not. R. Astron. Soc. 415 487
[36] Shi Y B, Stancil P C and Wang J G 2013 Astron. & Astrophys. 551 A140
[37] Diniz L G, Alijah A and Mohallem J R 2018 Astrophys. J. Suppl. Ser. 235 1
[38] Lyu S P et al. 2019 Chin. Phys. Lett. 36 077202
[39] Du J H and Peng L M 2018 Chin. Chem. Lett. 29 747
[40] Li F, Huang W H and Gong X Q 2018 Chin. Chem. Lett. 29 765
[41] Wang K, Wang X X, Qu Y Z, Liu C H et al. 2020 Chin. Phys. Lett. 37 023401
[42] Elkahwagy N et al. 2018 Chin. Phys. Lett. 35 103101
[43] Buenker R J and Phillips R A 1985 J. Mol. Struct.: THEOCHEM 123 291
[44] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
[45] Dunning T H 1989 J. Chem. Phys. 90 1007
[46] Chen J J, Luh W T and Jeung G H 1999 J. Chem. Phys. 110 4402
[47] Huber K P and Herzberg G 1978 Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold)
[48] Dulick M et al. 2003 Astrophys. J. 594 651
[49] Docken K K and Hinze J 1972 J. Chem. Phys. 57 4936
[50] Gadéa F X and Leininger T 2006 Theor. Chem. Acc. 116 566
[51] Stwalley W C and Zemke W T 1993 J. Phys. Chem. Ref. Data 22 87
[52] Chan Y C et al. 1986 J. Chem. Phys. 85 2436
[53] Orth F B and Stwalley W C 1979 J. Mol. Spectrosc. 76 17
[54] Lundsgaard M F V and Rudolph H 1999 J. Chem. Phys. 111 6724
[55] Minaev B F 1999 Phys. Chem. Chem. Phys. 1 3403
[56] Minaev B F and Minaeva V A 2001 Phys. Chem. Chem. Phys. 3 720
[57] Xu X S et al. 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172
[58] Weck P F et al. 2004 Astrophys. J. 613 567
[59] Lodders K 1999 Astrophys. J. 519 793
[60] Tennyson J and Yurchenko S 2018 Atoms 6 26
[61] Yadin B et al. 2012 Mon. Not. R. Astron. Soc. 425 34
[62] Wong A et al. 2017 Mon. Not. R. Astron. Soc. 470 882
[63] Yurchenko S N et al. 2018 Mon. Not. R. Astron. Soc. 473 5324
[1]
. [J]. 中国物理快报, 2021, 38(4): 43101-.
[2]
. [J]. 中国物理快报, 2018, 35(9): 98201-.
[3]
. [J]. 中国物理快报, 2016, 33(06): 63102-063102.
[4]
. [J]. 中国物理快报, 2015, 32(07): 73103-073103.
[5]
LI Rui;YAN Bing;ZHAO Shu-Tao;GUO Qing-Qun;LIAN Ke-Yan;TIAN Chuan-Jin;PAN Shou-Fu. Electronic Curves Crossing in Methyl Iodide by Spin--Orbit Ab Initio Calculation [J]. 中国物理快报, 2008, 25(5): 1644-1645.
[6]
WU Yong;YAN Bing;LIU Ling;WANG Jian-Guo;. Ab Initio Calculations of Differential Cross Sections for Single Charge Transfer in 3 He2+ +4 He Collisions [J]. 中国物理快报, 2007, 24(7): 1999-2002.