1National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 2York-Nanjing Joint Center (YNJC) for Spintronics and Nanoengineering, School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China 3Centre for Integrated Spintronic Devices, School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China 4Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311305, China
Abstract:We report a perpendicular magnetic tunnel junction (pMTJ) cell with a tunnel magnetoresistance (TMR) ratio of nearly 200% at room temperature based on CoFeB/Ta/CoFeB as the free layer (FL) and a synthetic antiferromagnetic (SAF) multilayer [Pt/Co]/Ru/[Pt/Co]/Ta/CoFeB as the reference layer (RL). The field-driven magnetization switching measurements show that the pMTJs exhibit an anomalous TMR hysteresis loop. The spin-polarized layer CoFeB of SAF-RL has a lower critical switching field than that of FL. The reason is related to the interlayer exchange coupling (IEC) through a moderately thick Ta spacer layer among SAF-RLs, which generates a moderate and negative bias magnetic field on CoFeB of RL. However, the IEC among RLs has a negligible influence on the current-driven magnetization switching of FL and its magnetization dynamics.