Reaction Rate Weighted Multilayer Nuclear Reaction Network
Huan-Ling Liu1,2 , Ding-Ding Han3* , Peng Ji4 , and Yu-Gang Ma1*
1 Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China2 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China3 School of Information Science and Technology, Fudan University, Shanghai 200433, China4 The Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, China
Abstract :Nuclear reaction rate $\lambda$ is a significant factor in processes of nucleosyntheses. A multi-layer directed-weighted nuclear reaction network, in which the reaction rate is taken as the weight, and neutron, proton, $^4$He and the remainder nuclei as the criteria for different reaction layers, is for the first time built based on all thermonuclear reactions in the JINA REACLIB database. Our results show that with the increase in the stellar temperature $T_{9}$, the distribution of nuclear reaction rates on the R-layer network demonstrates a transition from unimodal to bimodal distributions. Nuclei on the R-layer in the region of $\lambda = [1,2.5\times10^{1}]$ have a more complicated out-going degree distribution than that in the region of $\lambda = [10^{11},10^{13}]$, and the number of involved nuclei at $T_{9} = 1$ is very different from the one at $T_{9} = 3$. The redundant nuclei in the region of $\lambda = [1, 2.5\times10^{1}]$ at $T_{9} = 3$ prefer $(\gamma,{\rm p})$ and $({\gamma,\alpha})$ reactions to the ones at $T_{9}=1$, which produce nuclei around the $\beta$ stable line. This work offers a novel way to the big-data analysis on the nuclear reaction network at stellar temperatures.
收稿日期: 2020-09-05
出版日期: 2020-10-14
[1] Burbidge E M, Burbidge G R, Fowler W A and Hoyle F 1957 Rev. Mod. Phys. 29 547
[2] Schatz H, Aprahamian A, Görres J et al. 1998 Phys. Rep. 294 167
[3] Arnould M, Goriely S and Takahashi K 2007 Phys. Rep. 450 97
[4] Käppeler F, Gallino R, Bisterzo S and Aoki W 2011 Rev. Mod. Phys. 83 157
[5] Chen J, Keane D, Ma Y G, Tang A and Xu Z 2018 Phys. Rep. 760 1
[6] Ji A P, Frebel A, Chiti A and Simon J D 2016 Nature 531 610
[7] Pian E, Avanzo P D, Benetti S 2017 Nature 551 67
[8] Fynbo H, Diget C A, Bergmann U C, Borge M J G et al. (ISOLDE Collaboration) 2005 Nature 433 136
[9] An Z D, Chen Z P, Ma Y G, Yu J K et al. 2015 Phys. Rev. C 92 045802
[10] Pais H, Gulminelli F, Providencia C and Röpke G 2018 Nucl. Sci. Tech. 29 181
[11] Tang X D, Ma S B, Fang X, Bucher B, Alongi A, Cahillane C and Tan W P 2019 Nucl. Sci. Tech. 30 126
[12] Ma S B, Zhang L Y and Hu J 2019 Nucl. Sci. Tech. 30 141
[13] Li W J, Ma Y G, Zhang G Q, Deng X G et al. 2019 Nucl. Sci. Tech. 30 180
[14] Ding W B, Yu Z, Xu Y, Liu C J and Bao T 2019 Chin. Phys. Lett. 36 049701
[15] Jiang Y, Lou J L, Ye Y L, Pang D Y et al. 2018 Chin. Phys. Lett. 35 082501
[16] Hotokezaka K, Piran T and Paul M 2015 Nat. Phys. 11 1042
[17] Kienle P, Faestermann T, Friese J, Korner H J et al. 2001 Prog. Part. Nucl. Phys. 46 73
[18] Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M and Stoitsov M 2012 Nature 486 509
[19] Wang R and Chen L W 2015 Phys. Rev. C 92 031303(R)
[20] Spergel D N, Verde L, Peiris H V, Komatsu E, Nolta M R et al. 2003 Astrophys. J. Suppl. Ser. 148 175
[21] SDSS Collaboration, website: http://www.sdss.org/
[22] Serpico P D, Esposito S, Iocco F, Mangano G, Miele G and Pisanti O 2004 J. Cosmol. Astropart. Phys. 2004(12) 010
[23] Guo H R, Han Y L and Cai C H 2019 Nucl. Sci. Tech. 30 13
[24] Baldik R and Yilmaz A 2018 Nucl. Sci. Tech. 29 156
[25] Yalcin C 2017 Nucl. Sci. Tech. 28 113
[26] Best A, Pantaleo F R, Boeltzig A, Imbriani G, Aliotta M et al. 2019 Phys. Lett. B 797 134900
[27] Marcucci L E, Mangano G, Kievsky A and Viviani M 2016 Phys. Rev. Lett. 116 102501
[28] Bennett M B, Wrede C and Brown B A 2016 Phys. Rev. Lett. 116 102502
[29] Huang B S, Ma Y G and He W B 2017 Phys. Rev. C 95 034606
[30] Giuliani S A, Matheson Z, Nazarewicz W et al. 2019 Rev. Mod. Phys. 91 011001
[31] Oganessian Yu Ts, Sh F, Bailey P D, Bennett M E et al. 2010 Phys. Rev. Lett. 104 142502
[32] Yu X B, Zhu L, Wu Z H, Li F, Su J and Guo C C 2018 Nucl. Sci. Tech. 29 154
[33] Naderi D and Alavi S A 2018 Nucl. Sci. Tech. 29 161
[34] Boilley D, Cauchois B, Lü H, Marchix A, Abe Y and Shen C 2018 Nucl. Sci. Tech. 29 172
[35] Kasen D, Metzger B, Barnes J, Quataert E and Ramirez-Ruiz E 2017 Nature 551 80
[36] Elhatisari S, Lee D, Rupak G, Epelbaum E, Krebs H, Lähde T A, Luu T and Meißner U G 2015 Nature 528 111
[37] Epelbaum E, Krebs H, Lee D and Meißner U G 2011 Phys. Rev. Lett. 106 192501
[38] He W B, Ma Y G, Cao X G, Cai X Z and Zhang G Q 2014 Phys. Rev. Lett. 113 032506
[39] Liu Y and Ye Y L 2018 Nucl. Sci. Tech. 29 184
[40] Zhang S, Wang J C, Bonasera A, Huang M R et al. 2019 Chin. Phys. C 43 064102
[41] Ma Y G, Fang D Q, Sun X Y, Zhou P et al. 2015 Phys. Lett. B 743 306
[42] Li Z H, Li Y J, Su J, Yan S Q, Wang Y B, Guo B, Nan D et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 32021
[43] Jiang W, Ye Y, Li Z H, Lin C J et al. 2017 Sci. Chin. Phys. Mech. Astron. 60 062011
[44] Yun X, Pang D Y, Xu Y P, Zhang Z, Xu R R, Ma Z Y and Yuan C X 2020 Sci. Chin. Phys. Mech. Astron. 63 222011
[45] Wei L, Lou J L, Ye Y L and Pang D Y 2020 Nucl. Sci. Tech. 31 20
[46] Wang Y T, Fang D Q, Xu X X, Sun L J, Wang K et al. 2018 Nucl. Sci. Tech. 29 98
[47] Wu D, Bai C L, Sagawa H, Song Z Q and Zhang H Q 2020 Nucl. Sci. Tech. 31 14
[48] Benzaid D, Bentridi S, Kerraci A and Amrani N 2020 Nucl. Sci. Tech. 31 9
[49] Liu P, Chen J, Keane D, Xu Z and Ma Y G 2019 Chin. Phys. C 43 124001
[50] Martin D, Arcones A, Nazarewicz W and Olsen E 2016 Phys. Rev. Lett. 116 121101
[51] Block M, Ackermann D, Blaum K, Droese C, Dworschak M et al. 2010 Nature 463 785
[52] Tu X L, Xu H S, Wang M, Zhang Y H et al. 2011 Phys. Rev. Lett. 106 112501
[53] Cyburt R H, Amthor A M, Ferguson R, Meisel Z, Smith K et al. 2010 Astrophys. J. Suppl. Ser. 189 240
[54] Angulo C, Arnould M, Rayet M, Descouvemont P et al. 1999 Nucl. Phys. A 656 3
[55] Xu Y, Takahashi K, Goriely S, Arnould M, Ohta M and Utsunomiya H 2013 Nucl. Phys. A 918 61
[56] Barabási A L and Albert R 1999 Science 286 509
[57] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[58] Costa L D, Oliveira O N, Travieso G, Rodrigues F A et al. 2011 Adv. Phys. 60 329
[59] Barabási A L 2016 Network Science (Cambridge: Cambridge University Press)
[60] Watts D J and Strogatz S H 1998 Nature 393 440
[61] Jolley C C and Douglas T 2010 Astrophys. J. 722 1921
[62] Jolley C and Douglas T 2012 Astrobiology 12 29
[63] Han D D, Liu J G, Ma Y G, Cai X Z and Shen W Q 2004 Chin. Phys. Lett. 21 1855
[64] Han D D, Liu J G and Ma Y G 2008 Chin. Phys. Lett. 25 765
[65] Qian J H, Han D D and Ma Y G 2012 Europhys. Lett. 100 48006
[66] Qian J H, Chen Q, Han D D, Ma Y G and Shen W Q 2014 Phys. Rev. E 89 062808
[67] Zhu L, Ma Y G, Chen Q and Han D D 2016 Sci. Rep. 6 31882
[68] Guo B, Li Z H, Bai X X, Liu W P, Shu, N C and Chen Y S 2006 Phys. Rev. C 73 048801
[69] Thomas R and Thielemann F K 2000 At. Data Nucl. Data Tables 75 1
[70] Rauscher T and Thielemann F K 2001 At. Data Nucl. Data Tables 79 47
[71] Liu H L, Han D D, Ma Y G and Zhu L 2020 Sci. Chin. Phys. Mech. Astron. 63 112062
[72] Bertulani C A 2020 Sci. Chin. Phys. Mech. Astron. 63 112063
[73] Long G L 2020 Sci. Chin. Phys. Mech. Astron. 63 112061
[74] Austin S M, West C and Heger A 2014 Phys. Rev. Lett. 112 111101
[75] Ferraro F, Takács M P, Piatti D, Cavanna F, Aliotta M et al. 2018 Phys. Rev. Lett. 121 172701
[76] Bodansky D, Clayton D D and Fowler W A 1968 Phys. Rev. Lett. 20 161