$X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks
Hua-Xing Chen1* , Wei Chen2* , Rui-Rui Dong3 , and Niu Su3
1 School of Physics, Southeast University, Nanjing 210094, China2 School of Physics, Sun Yat-Sen University, Guangzhou 510275, China3 School of Physics, Beihang University, Beijing 100191, China
Abstract :Very recently the LHCb collaboration reported their observation of the first two fully open-flavor tetraquark states, the $X_0(2900)$ of $J^P = 0^+$ and the $X_1(2900)$ of $J^P = 1^-$. We study their possible interpretations using the method of QCD sum rules, paying special attention to an interesting feature of this experiment that the higher resonance $X_1(2900)$ has a width significantly larger than the lower one $X_0(2900)$. Our results suggest that the $X_0(2900)$ can be interpreted as the s-wave $D^{*-}K^{*+}$ molecule state of $J^P = 0^+$, and the $X_1(2900)$ can be interpreted as the p-wave $\bar c \bar s u d$ compact tetraquark state of $J^P = 1^-$. Mass predictions of their bottom partners are also given.
收稿日期: 2020-09-02
出版日期: 2020-09-25
:
12.38.Lg
(Other nonperturbative calculations)
11.40.-q
(Currents and their properties)
12.39.Mk
(Glueball and nonstandard multi-quark/gluon states)
[1] Aaij R 2020 arXiv:2009.00025 [hep-ex]
Aaij R 2020 arXiv:2009.00026 [hep-ex]
[2] Zyla P A 2020 Prog. Theor. Exp. Phys. 2020 083C01
[3] Chen H X, Chen W, Liu X and Zhu S L 2016 Phys. Rep. 639 1
[4] Lebed R F, Mitchell R E and Swanson E S 2017 Prog. Part. Nucl. Phys. 93 143
[5] Esposito A, Pilloni A and Polosa A D 2017 Phys. Rep. 668 1
[6] Guo F K, Hanhart C, Meissner U G, Wang Q, Zhao Q and Zou B S 2018 Rev. Mod. Phys. 90 015004
[7] Ali A, Lange J S and Stone S 2017 Prog. Part. Nucl. Phys. 97 123
[8] Olsen S L, Skwarnicki T and Zieminska D 2018 Rev. Mod. Phys. 90 015003
[9] Karliner M, Rosner J L and Skwarnicki T 2018 Annu. Rev. Nucl. Part. Sci. 68 17
[10] Liu Y R, Chen H X, Chen W, Liu X and Zhu S L 2019 Prog. Part. Nucl. Phys. 107 237
[11] Brambilla N, Eidelman S, Hanhart C, Nefediev A, Shen C P, Thomas C E, Vairo A and Yuan C Z 2020 Phys. Rep. 873 1
[12] Abazov V M 2016 Phys. Rev. Lett. 117 022003
[13] Abazov V M 2018 Phys. Rev. D 97 092004
[14] Aaij R 2016 Phys. Rev. Lett. 117 152003
Aaij R 2017 Phys. Rev. Lett. 118 109904
[15] Sirunyan A M 2018 Phys. Rev. Lett. 120 202005
[16] Aaltonen T 2018 Phys. Rev. Lett. 120 202006
[17] Aaboud M 2018 Phys. Rev. Lett. 120 202007
[18] Shifman M A, Vainshtein A I and Zakharov V I 1979 Nucl. Phys. B 147 385
[19] Reinders L J, Rubinstein H and Yazaki S 1985 Phys. Rep. 127 1
[20] Chen W, Chen H X, Liu X, Steele T G and Zhu S L 2017 Phys. Lett. B 773 247
[21] Chen H X, Chen W, Liu X and Zhu S L 2020 arXiv:2006.16027 [hep-ph]
[22] Aaij R 2020 arXiv:2006.16957 [hep-ex]
[23] Liu X H, Yan M J, Ke H W, Li G and Xie J J 2020 arXiv:2008.07190 [hep-ph]
[24] He J and Chen D Y 2020 arXiv:2008.07782 [hep-ph]
[25] Yang K C, Hwang W Y P, Henley E M and Kisslinger L S 1993 Phys. Rev. D 47 3001
[26] Narison S 2002 QCD as a Theory of Hadrons: From Partons to Confinement in Cambridge Monographs on Particle Physics, Nuclear Physics, and Cosmology vol 17 p 1 (Cambridge: Cambridge University Press)
[27] Gimenez V, Lubicz V, Mescia F, Porretti V and Reyes J 2005 Eur. Phys. J. C 41 535
[28] Jamin M 2002 Phys. Lett. B 538 71
[29] Ioffe B L and Zyablyuk K N 2003 Eur. Phys. J. C 27 229
[30] Ovchinnikov A A and Pivovarov A A 1988 Sov. J. Nucl. Phys. 48 721
[31] Ellis J R, Gardi E, Karliner M and Samuel M A 1996 Phys. Rev. D 54 6986
[32] Chen H X, Liu X, Hosaka A and Zhu S L 2008 Phys. Rev. D 78 034012
[33] Liu M Z, Xie J J and Geng L S 2020 arXiv:2008.07389 [hep-ph]
[34] Huang Y, Lu J X, Xie J J and Geng L S 2020 arXiv:2008.07959 [hep-ph]
[35] Molina R and Oset E 2020 arXiv:2008.11171 [hep-ph]
[36] Karliner M and Rosner J L 2020 arXiv:2008.05993 [hep-ph]
[37] Molina R, Branz T and Oset E 2010 Phys. Rev. D 82 014010
[1]
. [J]. 中国物理快报, 2022, 39(5): 51201-.
[2]
. [J]. 中国物理快报, 2021, 38(7): 71201-071201.
[3]
. [J]. 中国物理快报, 2020, 37(12): 121201-.
[4]
. [J]. 中国物理快报, 2014, 31(08): 81201-081201.
[5]
. [J]. 中国物理快报, 2014, 31(05): 51201-051201.
[6]
. [J]. 中国物理快报, 2014, 31(04): 41102-041102.
[7]
. [J]. 中国物理快报, 2013, 30(9): 91202-091202.
[8]
LI Hua;LUO Xin-Lian;JIANG Yu;ZONG Hong-Shi;**. The Renormalized Equation of State and Quark Star [J]. 中国物理快报, 2010, 27(12): 121202-121202.
[9]
GUO Xiao-Bo;TAO Jun;LI Lei;WANG Shun-Jin;. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions [J]. 中国物理快报, 2010, 27(6): 61201-061201.
[10]
GUO Xiao-Bo;TAO Jun;LI Lei;ZHOU Shan-Gui;WANG Shun-Jin;. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU (3) Flavor Mixing [J]. 中国物理快报, 2009, 26(4): 41201-041201.
[11]
WANG Zhi-Gang. Reanalysis of the (0+ ,1+ ) States Bs0 and Bs1 with QCD Sum Rules [J]. 中国物理快报, 2008, 25(11): 3908-3911.
[12]
HUANG Tao;ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model [J]. 中国物理快报, 2008, 25(10): 3601-3604.
[13]
TAO Jun;LI Lei;ZHOU Shan-Gui;WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons [J]. 中国物理快报, 2008, 25(9): 3185-3187.
[14]
JIN Hong-Ying;LIU Shao-Min;ZHANG Zhu-Feng;LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays [J]. 中国物理快报, 2008, 25(5): 1609-1612.
[15]
ZHANG Ying;WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation [J]. 中国物理快报, 2008, 25(4): 1227-1230.