Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation
Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou* , and Jijun Zhao
MOE Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
Abstract :Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI$_{3}$ is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose a general strategy of self-intercalation to achieve enhanced ferromagnetism in bilayer CrI$_{3}$. We show that filling either Cr or I atoms into the van der Waals gap of stacked and twisted CrI$_{3}$ bilayers can induce the double exchange effect and significantly strengthen the interlayer ferromagnetic coupling. According to our first-principles calculations, the intercalated native atoms act as covalent bridge between two CrI$_{3}$ layers and lead to discrepant oxidation states for the Cr atoms. These theoretical results offer a facile route to achieve high-Curie-temperature 2D magnets for device implementation.
收稿日期: 2020-07-17
出版日期: 2020-09-12
:
75.50.Dd
(Nonmetallic ferromagnetic materials)
75.30.Et
(Exchange and superexchange interactions)
75.50.Pp
(Magnetic semiconductors)
[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Fivaz R and Mooser E 1967 Phys. Rev. 163 743
[4] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270
[5] Niu B, Su T, Francisco B A, Ghosh S, Kargar F, Huang X, Lohmann M, Li J, Xu Y and Taniguchi T 2019 Nano Lett. 20 553
[6] Wang H, Fan F, Zhu S and Wu H 2016 Europhys. Lett. 114 47001
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H and Xiao D 2018 Nat. Nanotechnol. 13 544
[8] Bao W, Wan J, Han X, Cai X, Zhu H, Kim D, Ma D, Xu Y, Munday J N and Drew H D 2014 Nat. Commun. 5 4224
[9] Ichinokura S, Sugawara K, Takayama A, Takahashi T and Hasegawa S 2016 ACS Nano 10 2761
[10] Gong Y, Yuan H, Wu C L, Tang P, Yang S Z, Yang A, Li G, Liu B, van de Groep J, Brongersma M L, Chisholm M F, Zhang S C, Zhou W and Cui Y 2018 Nat. Nanotechnol. 13 294
[11] Wang N, Tang H, Shi M, Zhang H, Zhuo W, Liu D, Meng F, Ma L, Ying J and Zou L 2019 J. Am. Chem. Soc. 141 17166
[12] Weber D, Trout A H, McComb D W and Goldberger J E 2019 Nano Lett. 19 5031
[13] Zhang C, Yuan Y, Wang M, Li P, Zhang J, Wen Y, Zhou S and Zhang X X 2019 Phys. Rev. Mater. 3 114403
[14] Hardy W J, Chen C W, Marcinkova A, Ji H, Sinova J, Natelson D and Morosan E 2015 Phys. Rev. B 91 054426
[15] Morosan E, Zandbergen H, Li L, Lee M, Checkelsky J, Heinrich M, Siegrist T, Ong N P and Cava R J 2007 Phys. Rev. B 75 104401
[16] Liu C, Zhang Y, Dong F, Reshak A, Ye L, Pinna N, Zeng C, Zhang T and Huang H 2017 Appl. Catal. B: Environ. 203 465
[17] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S and Dan J 2020 Nature 581 171
[18] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[21] Sivadas N, Okamoto S, Xu X, Fennie C J and Xiao D 2018 Nano Lett. 18 7658
[22] Liu N, Zhou S and Zhao J 2020 arXiv:2008.12519v1 [cond-mat.mtrl-sci]
[23] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P and Fernández-Rossier J 2018 Science 360 1218
[24] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T and Watanabe K 2018 Science 360 1214
[25] Morell E S, León A, Miwa R H and Vargas P 2019 2D Mater. 6 025020
[26] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[27] Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T and Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801
[28] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T and Kaxiras E 2018 Nature 556 80
[29] Yan W, He W Y, Chu Z D, Liu M, Meng L, Dou R F, Zhang Y, Liu Z, Nie J C and He L 2013 Nat. Commun. 4 2159
[30] Yin L J, Qiao J B, Zuo W J, Li W T and He L 2015 Phys. Rev. B 92 081406
[31] Fang T, Liu T, Jiang Z, Yang R, Servati P and Xia G 2019 ACS Appl. Nano Mater. 2 3138
[32] Lim H E, Miyata Y, Kitaura R, Nishimura Y, Nishimoto Y, Irle S, Warner J H, Kataura H and Shinohara H 2013 Nat. Commun. 4 2548
[33] Liu N, Zhang J, Zhou S and Zhao J 2020 J. Mater. Chem. C 8 6264
[34] Ganguli S C, Singh H, Roy I, Bagwe V, Bala D, Thamizhavel A and Raychaudhuri P 2016 Phys. Rev. B 93 144503
[35] Bointon T H, Khrapach I, Yakimova R, Shytov A V, Craciun M F and Russo S 2014 Nano Lett. 14 1751
[36] Seel J, Dahn J 2000 J. Electrochem. Soc. 147 892
[37] Voiry D, Yamaguchi H, Li J, Silva R, Alves D C, Fujita T, Chen M, Asefa T, Shenoy V B and Eda G 2013 Nat. Mater. 12 850
[38] Koski K J, Wessells C D, Reed B W, Cha J J, Kong D and Cui Y 2012 J. Am. Chem. Soc. 134 13773
[39] Yuan H, Wang H and Cui Y 2015 Acc. Chem. Res. 48 81
[40] Motter J P, Koski K J and Cui Y 2014 Chem. Mater. 26 2313
[41] Kovtyukhova N I, Wang Y, Lv R, Terrones M, Crespi V H and Mallouk T E 2013 J. Am. Chem. Soc. 135 8372
[42] Lai H, He R, Xu X, Shi T, Wan X, Meng H, Chen K, Zhou Y, Chen Q and Liu P 2020 Nanoscale 12 1448
[43] Huang C, Feng J, Wu F, Ahmed D, Huang B, Xiang H, Deng K and Kan E 2018 J. Am. Chem. Soc. 140 11519
[44] Goodenough J B 1955 Phys. Rev. 100 564
[45] Zener C 1951 Phys. Rev. 81 440
[1]
. [J]. 中国物理快报, 2023, 40(2): 27502-.
[2]
. [J]. 中国物理快报, 2022, 39(11): 117501-.
[3]
. [J]. 中国物理快报, 2017, 34(7): 77501-.
[4]
. [J]. 中国物理快报, 2014, 31(04): 47501-047501.
[5]
. [J]. Chin. Phys. Lett., 2012, 29(12): 128101-128101.
[6]
. [J]. 中国物理快报, 2012, 29(8): 87501-087501.
[7]
QI Xin;ZHOU Xin;SHU Di;ZHAO Jing-Jing;WANG Wei;CHEN Juan**
. Effect of Porous Structure on the Magnetic Properties of Nix Mgy Zn1−x-y Fe2 O4 Magnetic Materials [J]. 中国物理快报, 2011, 28(10): 107502-107502.
[8]
ZHOU Xin;HOU Zhi-Ling;LI Feng;QI Xin**
. Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method [J]. 中国物理快报, 2010, 27(11): 117501-117501.
[9]
SU Hua;ZHANG Huai-Wu;TANG Xiao-Li;JING Yu-Lan;ZHONG Zhi-Yong. Influences of Bi2 O3 /V2 O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite [J]. 中国物理快报, 2009, 26(5): 57501-057501.
[10]
WANG Xiao-Xiong;LI Hong-Nian;XU Ya-Bo;WANG;ZHANG Wen-Hua;XU Fa-Qiang. Electronic Structure of Eu6 C60 [J]. 中国物理快报, 2009, 26(1): 17104-017104.
[11]
SONG Yuan-Qiang;ZHANG Huai-Wu;WEN Qi-Ye;ZHU Hao;John Q. Xiao. Additional Y3+ Doping Effect on Ferromagnetism of Ce0.97 Co0.03 O2-δ Compounds [J]. 中国物理快报, 2008, 25(3): 1106-1109.
[12]
TENG Xiao-Yun;YU Wei;YANG Li-Hua;HAO Qiu-Yan;ZHANG Li;XU He-Ju;LIU Cai-Chi;FU Guang-Sheng. Room-Temperature Ferromagnetism in Zn 1-x Mnx O Thin Films Deposited by Pulsed Laser Deposition [J]. 中国物理快报, 2007, 24(4): 1073-1075.
[13]
ZHANG Ning;BAO Jian-Chun;LI Gang;GENG Tao;CHEN Ji-Kang. Intergranular Tunnelling and Field-Induced Percolation Fluctuation of Granular Composites (La1-z Agz MnO3 )/(MnO2 /Mn2 O3 ) [J]. 中国物理快报, 2005, 22(11): 2940-2943.
[14]
DAI Yao-Dong;HAN Wei;ZHENG Likun;XIA Yuan-Fu. Magnetic Behaviour of Iron Oxychloride and Its Organometallic Intercalation Compounds Studied by Möossbauer Spectroscopy [J]. 中国物理快报, 2005, 22(8): 2059-2062.
[15]
WU Jian;ZHANG Shi-Yuan;HU Xiu-Kun. Spin-Polarized Tunnelling Magnetoresistance Effects in La0.833 K0.167 MnO3 /SrTiO3 Polycrystalline Perovskite Manganites [J]. 中国物理快报, 2005, 22(6): 1507-1510.