1State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China 2National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China 3Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 4Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
Abstract:The dynamical axion field is a new state of quantum matter where the magnetoelectric response couples strongly to its low-energy magnetic fluctuations. It is fundamentally different from an axion insulator with a static quantized magnetoelectric response. The dynamical axion field exhibits many exotic phenomena such as axionic polariton and axion instability. However, these effects have not been experimentally confirmed due to the lack of proper topological magnetic materials. Combining analytic models and first-principles calculations, here we predict a series of van der Waals layered Mn$_2$Bi$_2$Te$_5$-related topological antiferromagnetic materials that could host the long-sought dynamical axion field with a topological origin. We also show that a large dynamical axion field can be achieved in antiferromagnetic insulating states close to the topological phase transition. We further propose the optical and transport experiments to detect such a dynamical axion field. Our results could directly aid and facilitate the search for topological-origin large dynamical axion field in realistic materials.
Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Böttcher J, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H and Molenkamp L W 2017 Nat. Commun.8 15197
[18]
Mogi M, Kawamura M, Yoshimi R, Tsukazaki A, Kozuka Y, Shirakawa N, Takahashi K S, Kawasaki M and Tokura Y 2017 Nat. Mater.16 516
[19]
Mogi M, Kawamura M, Tsukazaki A, Yoshimi R, Takahashi K S, Kawasaki M and Tokura Y 2017 Sci. Adv.3 eaao1669
[20]
Xiao D, Jiang J, Shin J H, Wang W, Wang F, Zhao Y F, Liu C, Wu W, Chan M H W, Samarth N and Chang C Z 2018 Phys. Rev. Lett.120 056801
Otrokov M M, Klimovskikh I I, Bentmann H, Zeugner A, Aliev Z S, Gass S, Wolter A U B, Koroleva V, Estyunin D, Shikin A M, Blanco-Rey M, Hoffmann M, Vyazovskaya Y, Eremeev S V, Koroteev Y M, Amiraslanov I R, Babanly M B, Mamedov N T, Abdullayev N A, Zverev V N, Büchner B, Schwier E F, Kumar S, Kimura A, Petaccia L, Di Santo G , Vidal R C, Schatz S, Kißner K, Min C H, Moser S K, Peixoto T R F, Reinert F, Ernst A, Echenique P M, Isaeva A and Chulkov E V 2019 Nature576 416
[51]
Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett.36 076801
[52]
Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science367 895
[53]
Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater.19 522