Experimental Synthesis of Strained Monolayer Silver Arsenide on Ag(111) Substrates
Shuai Zhang1,2, Yang Song1,2, Hang Li1,2, Jin-Mei Li3, Kai Qian1,2, Chen Liu3, Jia-Ou Wang3, Tian Qian1, Yu-Yang Zhang1,2,4, Jian-Chen Lu5, Hong Ding1,2,4, Xiao Lin1,2,4**, Jinbo Pan1,2**, Shi-Xuan Du1,2,4, Hong-Jun Gao1,2,4**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2School of Physical Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China 3Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100190, China 4CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 5Kunming University of Science and Technology, Kunming 650500, China
Abstract:Two-dimensional (2D) materials are playing more and more important roles in both basic sciences and industrial applications. For 2D materials, strain could tune the properties and enlarge applications. Since the growth of 2D materials on substrates is often accompanied by strain, the interaction between 2D materials and substrates is worthy of careful attention. Here we demonstrate the fabrication of strained monolayer silver arsenide (AgAs) on Ag(111) by molecular beam epitaxy, which shows one-dimensional stripe structures arising from uniaxial strain. The atomic geometric structure and electronic band structure are investigated by low energy electron diffraction, scanning tunneling microscopy, x-ray photoelectron spectroscopy, angle-resolved photoemission spectroscopy and first-principle calculations. Monolayer AgAs synthesized on Ag(111) provides a platform to study the physical properties of strained 2D materials.
Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano7 2898
Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H and Baek J B 2016 Proc. Natl. Acad. Sci. USA113 7414
Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X, Wang C, Song F, Li M, Wan C, Huang Y and Duan X 2018 Nature562 254
[24]
Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S and Kobayashi K 2012 Phys. Rev. Lett.109 227401
[25]
Liu Y, Rodrigues J N B, Luo Y Z, Li L, Carvalho A, Yang M, Laksono E, Lu J, Bao Y, Xu H, Tan S J R, Qiu Z, Sow C H, Feng Y P, Neto A H C, Adam S, Lu J and Loh K P 2018 Nat. Nanotechnol.13 828
[26]
Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P and LeRoy B J 2012 Nat. Phys.8 382
Lin X, Lu J C, Shao Y, Zhang Y Y, Wu X, Pan J B, Gao L, Zhu S Y, Qian K, Zhang Y F, Bao D L, Li L F, Wang Y Q, Liu Z L, Sun J T, Lei T, Liu C, Wang J O, Ibrahim K, Leonard D N, Zhou W, Guo H M, Wang Y L, Du S X, Pantelides S T and Gao H J 2017 Nat. Mater.16 717
[35]
Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano11 1689