Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry
Yun-Peng Yang1,2 , Jing Zhang3 , Zhi-Yuan Li3 , Li-Feng Wang2,3 , Jun-Feng Wu3 , Wen-Hua Ye2,3** , Xian-Tu He2,3
1 School of Physics, Peking University, Beijing 1008712 Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 1008713 Institute of Applied Physics and Computational Mathematics, Beijing 100094
Abstract :The Rayleigh–Taylor instability at the weakly nonlinear (WN) stage in spherical geometry is studied by numerical simulation. The mode coupling processes are revealed. The results are consistent with the WN model based on parameter expansion, while higher order effects are found to be non-negligible. For Legendre mode perturbation $P_n(\cos\theta)$, the nonlinear saturation amplitude (NSA) of the fundamental mode decreases with the mode number $n$. When $n$ is large, the spherical NSA is lower than the corresponding planar one. However, for large $n$, the planar NSA can be recovered by applying Fourier transformation to the bubble/spike near the equator and calculating the NSA of the converted trigonometric harmonic.
收稿日期: 2019-12-30
出版日期: 2020-04-25
:
52.57.Fg
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
47.20.Ma
(Interfacial instabilities (e.g., Rayleigh-Taylor))
52.35.Py
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
引用本文:
. [J]. 中国物理快报, 2020, 37(5): 55201-.
Yun-Peng Yang, Jing Zhang, Zhi-Yuan Li, Li-Feng Wang, Jun-Feng Wu, Wen-Hua Ye, Xian-Tu He. Simulation of the Weakly Nonlinear Rayleigh–Taylor Instability in Spherical Geometry. Chin. Phys. Lett., 2020, 37(5): 55201-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/5/055201
或
https://cpl.iphy.ac.cn/CN/Y2020/V37/I5/55201
[1]
. [J]. 中国物理快报, 2020, 37(7): 75201-.
[2]
. [J]. 中国物理快报, 2020, 37(2): 25201-.
[3]
. [J]. 中国物理快报, 2020, 37(1): 15201-.
[4]
. [J]. 中国物理快报, 2019, 36(2): 25201-.
[5]
. [J]. 中国物理快报, 2018, 35(5): 55201-.
[6]
. [J]. 中国物理快报, 2017, 34(7): 75201-.
[7]
. [J]. 中国物理快报, 2017, 34(4): 45201-045201.
[8]
. [J]. 中国物理快报, 2014, 31(09): 95201-095201.
[9]
. [J]. 中国物理快报, 2014, 31(04): 44702-044702.
[10]
. [J]. 中国物理快报, 2014, 31(04): 45201-045201.
[11]
YE Wen-Hua;**;WANG Li-Feng;;HE Xian-Tu;
. Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability [J]. 中国物理快报, 2010, 27(12): 125203-125203.
[12]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers [J]. 中国物理快报, 2010, 27(2): 25203-025203.
[13]
WANG Li-Feng;YE Wen-Hua;;LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability [J]. 中国物理快报, 2010, 27(2): 25202-025202.
[14]
WANG Li-Feng;YE Wen-Hua;;FAN Zheng-Feng;XUE Chuang;LI Ying-Jun. A Weakly Nonlinear Model for Kelvin-Helmholtz Instability in Incompressible Fluids [J]. 中国物理快报, 2009, 26(7): 74704-074704.