Consistent Scaling Exponents at the Deconfined Quantum-Critical Point
Anders W. Sandvik1,2** , Bowen Zhao1
1 Department of Physics, Boston University, Boston, Massachusetts 02215, USA2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Abstract :We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$–$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension corresponding to the value $\nu = 0.455 \pm 0.002$ of the correlation-length exponent. This value agrees with previous (less precise) results from conventional methods, e.g., finite-size scaling of the near-critical order parameters. We also study the $Q$-derivatives of the Binder cumulants of the order parameters for $L^2$ lattices with $L$ up to $448$. The slope grows as $L^{1/\nu}$ with a value of $\nu$ consistent with the scaling dimension of the $Q$ term. There are no indications of runaway flow to a first-order phase transition. The mutually consistent estimates of $\nu$ provide compelling support for a continuous deconfined quantum-critical point.
收稿日期: 2020-04-06
出版日期: 2020-04-21
:
75.10.Jm
(Quantized spin models, including quantum spin frustration)
64.70.Tg
(Quantum phase transitions)
75.40.Mg
(Numerical simulation studies)
75.30.Kz
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
[1] Sachdev S 2008 Nat. Phys. 4 173 [2] Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 [3] Wen X G 2019 Science 363 eaal3099 [4] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490 [5] Kaul R K, Melko R G and Sandvik A W 2013 Annu. Rev. Condens. Matter Phys. 4 179 [6] Sandvik A W, Daul S, Singh R R P and Scalapino D J 2002 Phys. Rev. Lett. 89 247201 [7] Haldane F D M 1988 Phys. Rev. Lett. 61 1029 [8] Chakravarty S, Halperin B I and Nelson D R 1989 Phys. Rev. B 39 2344 [9] Read N and Sachdev S 1989 Phys. Rev. Lett. 62 1694 [10] Read N and Sachdev S 1990 Phys. Rev. B 42 4568 [11] Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148 [12] Murthy G and Sachdev S 1990 Nucl. Phys. B 344 557 [13] Motrunich O I and Vishwanath A 2004 Phys. Rev. B 70 075104 [14] Sandvik A W 2007 Phys. Rev. Lett. 98 227202 [15] Melko R G and Kaul R K 2008 Phys. Rev. Lett. 100 017203 [16] Jiang F J, Nyfeler M, Chandrasekharan S and Wiese U J 2008 J. Stat. Mech.: Theory Exp. 2008 P02009 [17] Lou J, Sandvik A W and Kawashima N 2009 Phys. Rev. B 80 180414 [18] Sandvik A W 2010 Phys. Rev. Lett. 104 177201 [19] Kaul R K 2011 Phys. Rev. B 84 054407 [20] Sandvik A W 2012 Phys. Rev. B 85 134407 [21] Harada K, Suzuki T, Okubo T, Matsuo H, Lou J, Watanabe H, Todo S and Kawashima N 2013 Phys. Rev. B 88 220408 [22] Chen K, Huang Y, Deng Y, Kuklov A B, Prokof'ev N V and Svistunov B V 2013 Phys. Rev. Lett. 110 185701 [23] Block M S, Melko R G and Kaul R K 2013 Phys. Rev. Lett. 111 137202 [24] Pujari S, Alet F and Damle K 2015 Phys. Rev. B 91 104411 [25] Suwa H, Sen A and Sandvik A W 2016 Phys. Rev. B 94 144416 [26] Shao H, Guo W and Sandvik A W 2016 Science 352 213 [27] Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W and Meng Z Y 2018 Phys. Rev. B 98 174421 [28] Evertz H G 2003 Adv. Phys. 52 1 [29] Sandvik A W 1999 Phys. Rev. B 59 R14157 [30] Sandvik A W 2010 AIP Conf. Proc. 1297 135 [31] Nahum A, Serna P, Chalker J T, Ortuño M and Somoza A M 2015 Phys. Rev. Lett. 115 267203 [32] Nahum A, Chalker J T, Serna P, Ortuño M and Somoza A M 2015 Phys. Rev. X 5 041048 [33] Zhao B, Weinberg P and Sandvik A W 2019 Nat. Phys. 15 678 [34] Serna P and Nahum A 2019 Phys. Rev. B 99 195110 [35] Takahashi J and Sandvik A W 2020 arXiv:2001.10045 [36] Kuklov A B, Matsumoto M, Prokof’ev N V, Svistunov B V, Troyer M 2008 Phys. Rev. Lett. 101 050405 [37] Levin M and Senthil T 2004 Phys. Rev. B 70 220403 [38] Wang C, Nahum A, Metlitski M A, Xu C and Senthil T 2017 Phys. Rev. X 7 031051 [39] Ma H and He Y C 2019 Phys. Rev. B 99 195130 [40] Ma R and Wang C 2019 arXiv:1912.12315 [41] Nahum A 2019 arXiv:1912.13468 [42] Gorbenko V, Rychkov S and Zan B 2018 J. High Energy Phys. 2018(10) 108 [43] Gorbenko V, Rychkov S and Zan B 2018 SciPost Phys. 5 050 [44] Patil P, Tang Y, Katz E and Sandvik A W 2017 Phys. Rev. B 96 045140 [45] Sandvik A W and Kurkijärvi J 1991 Phys. Rev. B 43 5950 [46] Sandvik A W 1992 J. Phys. A: Math. Gen. 25 3667 [47] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431 [48] Sen A, Suwa H and Sandvik A W 2015 Phys. Rev. B 92 195145 [49] Campostrini M, Hasenbusch M, Pelissetto A, Rossi P and Vicari E 2002 Phys. Rev. B 65 144520 [50] Jiang F J and Wiese U J 2011 Phys. Rev. B 83 155120 [51] Iino S, Morita S, Kawashima N and Sandvik A W 2019 J. Phys. Soc. Jpn. 88 034006 [52] Nakayama Y and Ohtsuki T 2016 Phys. Rev. Lett. 117 131601 [53] Liu Y H, Wang Z J, Sato T, Hohenadler M, Wang C, Guo W A and Assaad F F 2019 Nat. Commun. 10 2658
[1]
. [J]. 中国物理快报, 2023, 40(3): 37501-.
[2]
. [J]. 中国物理快报, 2022, 39(10): 107501-.
[3]
. [J]. 中国物理快报, 2022, 39(10): 107502-.
[4]
. [J]. 中国物理快报, 2022, 39(7): 77502-077502.
[5]
. [J]. 中国物理快报, 2021, 38(11): 110301-110301.
[6]
. [J]. 中国物理快报, 2021, 38(9): 97501-097501.
[7]
. [J]. 中国物理快报, 2021, 38(9): 97502-097502.
[8]
. [J]. 中国物理快报, 2019, 36(6): 67501-.
[9]
. [J]. 中国物理快报, 2018, 35(3): 37501-.
[10]
. [J]. 中国物理快报, 2016, 33(07): 77503-077503.
[11]
. [J]. 中国物理快报, 2016, 33(05): 50301-050301.
[12]
. [J]. 中国物理快报, 2015, 32(12): 127503-127503.
[13]
. [J]. 中国物理快报, 2015, 32(10): 100303-100303.
[14]
. [J]. 中国物理快报, 2015, 32(5): 50302-050302.
[15]
. [J]. 中国物理快报, 2014, 31(06): 60506-060506.