High-Pressure Ultrafast Dynamics in Sr$_{2}$IrO$_{4}$: Pressure-Induced Phonon Bottleneck Effect
Yanling Wu1†, Xia Yin2†, Jiazila Hasaien1,3, Yang Ding2**, Jimin Zhao1,3,4**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Center for High-Pressure Sciences and Technology Advanced Research, Beijing 100094 3School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049 4Songshan Lake Materials Laboratory, Dongguan 523808
Abstract:By integrating pump-probe ultrafast spectroscopy with diamond anvil cell (DAC) technique, we demonstrate a time-resolved ultrafast dynamics study on non-equilibrium quasiparticle (QP) states in Sr$_{2}$IrO$_{4}$ under high pressure. On-site in situ condition is realized, where both the sample and DAC have fixed position during the experiment. The QP dynamics exhibits a salient pressure-induced phonon bottleneck feature at 20 GPa, which corresponds to a gap shrinkage in the electronic structure. A structural transition is also observed at 32 GPa. In addition, the slowest relaxation component reveals possible heat diffusion or pressure-controlled local spin fluctuation associated with the gap shrinkage. Our work enables precise pressure dependence investigations of ultrafast dynamics, paving the way for reliable studies of high-pressure excited state physics.
Matsunaga R, Tsuji N, Fujita H, Sugioka A, Makise K, Uzawa Y, Terai H, Wang Z, Aoki H and Shimano R 2014 Science345 1145
[8]
Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P and Zhao J M 2017 Phys. Rev. B95 235108
[9]
Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G and Zhao J M 2019 Phys. Rev. B99 094307
[10]
Guo J, Zhou Y Z, Huang C, Cai S, Sheng Y T, Gu G D, Yang C L, Lin G C, Yang K, Li A G, Wu Q, Xiang T and Sun L L 2020 Nat. Phys.16 295
[11]
Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G and Felser C 2009 Nat. Mater.8 630
[12]
Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett.111 087001
Hsieh S, Bhattacharyya P, Zu C, Mittiga T, Smart T J, Machado F, Kobrin B, Höhn T O, Rui N Z, Kamrani M, Chatterjee S, Choi S, Zaletel M, Struzhkin V V, Moore J E, Levitas V I, Jeanloz R and Yao N Y 2019 Science366 1349
[18]
Yip K Y, Ho K O, Yu K Y, Chen Y, Zhang W, Kasahara S, Mizukami Y, Shibauchi T, Matsuda Y, Goh S K and Yang S 2019 Science366 1355
[19]
Lesik M, Plisson T, Toraille L, Renaud J, Occelli F, Schmidt M, Salord O, Delobbe A, Debuisschert T, Rondin L, Loubeyre P and Roch J F 2019 Science366 1359
Afanasiev D, Gatilova A, Groenendijk D J, Ivanov B A, Gibert M, Gariglio S, Mentink J, Li J, Dasari N, Eckstein M, Rasing T, Caviglia A D and Kimel A V 2019 Phys. Rev. X9 021020
Chia E E M, Talbayev D, Zhu J X, Yuan H Q, Park T, Thompson J D, Panagopoulos C, Chen G F, Luo J L, Wang N L and Taylor A J 2010 Phys. Rev. Lett.104 027003
Ishii K, Jarrige I, Yoshida M, Ikeuchi K, Mizuki J, Ohashi K, Takayama T, Matsuno J and Takagi H 2011 Phys. Rev. B83 115121
[42]
Zhang J B, Yan D Y, Yesudhas S, Deng H S, Xiao H, Chen B J, Sereika R, Yin X, Yi C J, Shi Y G, Liu Z X, Pärschke E M, Chen C C, Chang J, Ding Y and Mao H K 2019 npj Quantum Mater.4 23