Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite
Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu**
Department of Physics, The Chinese University of Hong Kong, Hong Kong
Abstract :A stable and long-range antiferromagnetic (AFM) coupling without charge carrier mediators has been searched for a long time, but the existence of this kind of coupling is still lacking. Based on first principle calculations, we systematically study carrier free long-range AFM coupling in four transition metal chalcopyrite systems: ABTe$_2$ (A = Cu or Ag, B = Ga or In) in the dilute doping case. The AFM coupling is mainly due to the $p$–$d$ coupling and electron redistribution along the interacting chains. The relatively small energy difference between $p$ and $d$ orbitals, as well as between dopants and atoms in the middle of the chain can enhance the stability of long-range AFM configurations. A multi-band Hubbard model is proposed to provide fundamental understanding of long-range AFM coupling.
收稿日期: 2019-10-03
出版日期: 2020-01-18
:
75.50.Pp
(Magnetic semiconductors)
71.15.Mb
(Density functional theory, local density approximation, gradient and other corrections)
75.30.Et
(Exchange and superexchange interactions)
引用本文:
. [J]. 中国物理快报, 2020, 37(2): 27501-.
Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite. Chin. Phys. Lett., 2020, 37(2): 27501-.
链接本文:
https://cpl.iphy.ac.cn/CN/10.1088/0256-307X/37/2/027501
或
https://cpl.iphy.ac.cn/CN/Y2020/V37/I2/27501
[1] Wang Y Y, Song C, Zhang J Y and Pan F 2017 Prog. Nat. Sci.: Mater. Int. 27 208 [2] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [3] Fukami S, Zhang C, DuttaGupta S, Kurenkov A and Ohno H 2016 Nat. Mater. 15 535 [4] Cheng R, Xiao J, Niu Q and Brataas A 2014 Phys. Rev. Lett. 113 057601 [5] Shirane G, Nathans R and Chen C W 1964 Phys. Rev. 134 A1547 [6] Zaja̧c M, Gosk J, Kamińska M, Twardowski A, Szyszko T and Podsiadł{o} S 2001 Appl. Phys. Lett. 79 2432 [7] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99 [8] Kasuya T 1956 Prog. Theor. Phys. 16 45 [9] Yosida K 1957 Phys. Rev. 106 893 [10] Anderson P W 1950 Phys. Rev. 79 350 [11] Goodenough J B 1955 Phys. Rev. 100 564 [12] Raebiger H, Lany S and Zunger A 2007 Phys. Rev. Lett. 99 167203 [13] Ku W, Rosner H, Pickett W E and Scalettar R T 2002 Phys. Rev. Lett. 89 167204 [14] Akamatsu H, Kumagai Y, Oba F, Fujita K, Murakami H, Tanaka K and Tanaka I 2011 Phys. Rev. B 83 214421 [15] Zhang X, Liu K, He J Q, Wu H, Huang Q Z, Lin J H, Lu Z Y and Huang F Q 2015 Sci. Rep. 5 15910 [16] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823 [17] Chan C K, Zhang X D, Zhang Y O, Tse K F, Deng B, Zhang J Z and Zhu J Y 2018 Chin. Phys. Lett. 35 017502 [18] Zhang X D, Zhang J Z, Tse K F, Zhang S B and Zhu J Y 2019 Phys. Rev. B 99 134435 [19] Coury M E A, Dudarev S L, Foulkes W M C, Horsfield A P, Ma P W and Spencer J S 2016 Phys. Rev. B 93 075101 [20] Jaffe J E and Zunger A 1984 Phys. Rev. B 29 1882 [21] Yoodee K, Woolley J C, and Sa-yakanit V 1984 Phys. Rev. B 30 5904 [22] Slater J C and Koster G F 1954 Phys. Rev. 94 1498
[1]
. [J]. 中国物理快报, 2022, 39(11): 117501-.
[2]
. [J]. 中国物理快报, 2020, 37(10): 107506-107506.
[3]
. [J]. 中国物理快报, 2020, 37(5): 57301-.
[4]
. [J]. 中国物理快报, 2019, 36(6): 67503-.
[5]
. [J]. 中国物理快报, 2018, 35(1): 17502-017502.
[6]
. [J]. 中国物理快报, 2017, 34(6): 67501-.
[7]
. [J]. 中国物理快报, 2016, 33(07): 77501-077501.
[8]
. [J]. 中国物理快报, 2015, 32(06): 67501-067501.
[9]
. [J]. 中国物理快报, 2014, 31(07): 78103-078103.
[10]
. [J]. 中国物理快报, 2014, 31(2): 27501-027501.
[11]
. [J]. 中国物理快报, 2013, 30(7): 77304-077304.
[12]
. [J]. 中国物理快报, 2013, 30(7): 77503-077503.
[13]
. [J]. 中国物理快报, 2013, 30(4): 47501-047501.
[14]
. [J]. Chin. Phys. Lett., 2013, 30(2): 27804-027804.
[15]
. [J]. 中国物理快报, 2012, 29(12): 127804-127804.