Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T =0K
Xue-Jing Feng, Lan Yin**
School of Physics, Peking University, Beijing 100871
Abstract :We study a homogeneous two-component dipolar Fermi gas with 1D spin-orbit coupling (SOC) at zero temperature and find that the system undergoes a transition from the paramagnetic phase to the ferromagnetic phase under suitable dipolar interaction constant $\lambda_{\rm d}$, SOC constant $\lambda_{\rm SOC}$ and contact interaction constant $\lambda_{\rm s}$. This phase transition can be of either 1st order or 2nd order, depending on the parameters. Near the 2nd-order phase transition, the system is partially magnetized in the ferromagnetic phase. With SOC, the ferromagnetic phase can even exist in the absence of the contact interaction. The increase in dipolar interaction, SOC strength, and contact interaction are all helpful to stabilize the ferromagnetic state. The critical dipolar interaction strength at the phase transition can be reduced by the increase in SOC strength or contact interaction. Phase diagrams of these systems are obtained.
收稿日期: 2019-09-29
出版日期: 2020-01-18
[1] Ni K K, Ospelkaus S, de Miranda M H G, Pe'Er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S and Ye J 2008 Science 322 231 [2] Bo Y, Moses S A, Bryce G, Covey J P, Hazzard K R A, Ana Maria R, Jin D S and Jun Y 2013 Nature 501 521 [3] Chotia A, Neyenhuis B, Moses S A, Yan B, Covey J P, Foss-Feig M, Rey A M, Jin D S and Ye J 2012 Phys. Rev. Lett. 108 080405 [4] Ni K K, Ospelkaus S, Wang D, Qu {A}m {A}{}ner G, Neyenhuis B, de Miranda M H G, Bohn J L, Ye J and Jin D S 2010 Nature 464 1324 [5] Wu C H, Park J W, Ahmadi P, Will S and Zwierlein M W 2012 Phys. Rev. Lett. 109 085301 [6] Lu M, Burdick N Q and Lev B L 2012 Phys. Rev. Lett. 108 215301 [7] Miyakawa T, Sogo T and Pu H 2008 Phys. Rev. A 77 061603 [8] Ronen S and Bohn J L 2010 Phys. Rev. A 81 033601 [9] Fregoso B M and Fradkin E 2009 Phys. Rev. Lett. 103 205301 [10] You L and Marinescu M 1999 Phys. Rev. A 60 2324 [11] Cooper N R and Shlyapnikov G V 2009 Phys. Rev. Lett. 103 155302 [12] Levinsen J, Cooper N R and Shlyapnikov G V 2011 Phys. Rev. A 84 013603 [13] Wu C and Hirsch J E 2010 Phys. Rev. B 81 020508 [14] Pikovski A, Klawunn M, Shlyapnikov G V and Santos L 2010 Phys. Rev. Lett. 105 215302 [15] Gadsbølle A L and Bruun G M 2012 Phys. Rev. A 86 033623 [16] Liu B and Yin L 2012 Phys. Rev. A 86 031603 [17] Liu B and Yin L 2011 Phys. Rev. A 84 043630 [18] Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D and Rey A M 2011 Phys. Rev. Lett. 107 115301 [19] Liao R and Brand J 2010 Phys. Rev. A 82 063624 [20] Zeng T S and Yin L 2014 Phys. Rev. B 89 174511 [21] Bhongale S G, Mathey L, Tsai S W, Clark C W and Zhao E 2012 Phys. Rev. Lett. 108 145301 [22] Yamaguchi Y, Sogo T, Ito T and Miyakawa T 2010 Phys. Rev. A 82 013643 [23] Burdick N Q, Tang Y and Lev B L 2016 Phys. Rev. X 6 031022 [24] Dalibard J, Gerbier F, Juzeliūnas G and Öhberg P 2011 Rev. Mod. Phys. 83 1523 [25] Victor G and Spielman I B 2013 Nature 494 49 [26] Zhai H 2015 Rep. Prog. Phys. 78 026001 [27] Lin Y J, Jiménez-Garcí K, and Spielman I B 2011 Nature 471 83 [28] Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301 [29] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 [30] Zheng W, Yu Z Q, Cui X and Zhai H 2013 J. Phys. B At. Mol. & Opt. Phys. 46 134007 [31] Li Y and Wu C 2012 Phys. Rev. B 85 205126 [32] Sogo T, Urban M, Schuck P and Miyakawa T 2012 Phys. Rev. A 85 031601 [33] Deng Y, You L and Yi S 2018 Phys. Rev. A 97 053609
[1]
. [J]. 中国物理快报, 2021, 38(5): 56701-.
[2]
. [J]. 中国物理快报, 2020, 37(7): 76701-.
[3]
. [J]. 中国物理快报, 2020, 37(5): 53702-053702.
[4]
. [J]. 中国物理快报, 2018, 35(11): 110301-.
[5]
. [J]. 中国物理快报, 2017, 34(7): 70501-070501.
[6]
. [J]. 中国物理快报, 2016, 33(11): 110304-110304.
[7]
. [J]. 中国物理快报, 2016, 33(08): 80303-080303.
[8]
. [J]. 中国物理快报, 2015, 32(5): 53401-053401.
[9]
. [J]. 中国物理快报, 2014, 31(11): 110303-110303.
[10]
. [J]. 中国物理快报, 2014, 31(04): 43401-043401.
[11]
. [J]. 中国物理快报, 2013, 30(11): 110303-110303.
[12]
. [J]. 中国物理快报, 2013, 30(11): 110305-110305.
[13]
. [J]. 中国物理快报, 2012, 29(8): 80501-080501.
[14]
TIE Lu, XUE Ju-Kui** . The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices [J]. 中国物理快报, 2012, 29(2): 20301-020301.
[15]
YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ -Function Interacting Bose and Fermi Gas [J]. 中国物理快报, 2010, 27(8): 80305-080305.